数学建模2:回归分析预测

回归模型是什么

回归分析预测模型是一种统计方法,用于研究变量之间的关系,并通过已知数据来预测一个变量的值。回归分析通常包括自变量和因变量,目标是建立一个回归模型来描述它们之间的关系。

简单来说回归模型就是找出一条直线或曲线来尽可能地拟合 所有的样本点 ,拟合的好坏通常通过误差(例如,残差平方和)来衡量,如果拟合误差较小那么我们认为样本符合此x和y的变量关系。如下图是一个简单的线性回归模型

一、线性回归模型

线性回归指的是两个变量之间的关系是一次函数,也就是图像是直线的。

一元线性回归:

建立模型:

一元线性回归指的是只有一个变量,也就是如下模型公式

误差最小化:

这里可以采用最小二乘法来使误差最小,对与已知数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。

损失函数:

要使损失函数最小,可知:

  • 斜率k =
  • 截距b =

Python代码

python 复制代码
import numpy as np
from matplotlib import pyplot as plt


class LinearRegression:
    def __init__(self, X, Y):
        self.X = X
        self.Y = Y
        self.K = None
        self.B = None

    def caculateKB(self):
        x_mean = np.mean(self.X)
        y_mean = np.mean(self.Y)
        n = 0.0
        d = 0.0
        for x, y in zip(self.X, self.Y):
            n += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2
        self.K = n / d
        self.B = y_mean - (self.K * x_mean)
        result = [self.K, self.B]
        return result
    def caculateY(self, n):
        if self.K == None:
            self.caculateKB()
        predict = self.K * n + self.B
        return predict

X=np.array([1,2,3,4,5,6,7,8,9,10]) #定义数据集
Y=2*X+np.random.normal(1,2,10) #Y是X的线性函数加上服从正态分布的随机误差
LinearRegression = LinearRegression(X,Y)
n = 11
result = LinearRegression.caculateY(n)
print(f'预测得y({n})的值为:{result}')
#计算残差和
y_predict = [LinearRegression.K * x + LinearRegression.B for x in X]
ss_residual=sum((y_predict - Y)**2)   #残差平方和
ss_total=sum((Y-np.mean(Y))**2)     #总平方和
print(f'残差和为:{ss_residual}')
#绘图
plt.scatter(X,Y)#绘制点
plt.plot(X,y_predict,color='r')#绘制回归线
plt.show()
相关推荐
DisonTangor7 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
Fasda123458 小时前
基于yolov10n的西瓜成熟度智能检测与分类系统实现详解
yolo·分类·数据挖掘
ZCXZ12385296a9 小时前
使用YOLOv8-seg和HGNetV2进行鼠鱼种类识别与分类
yolo·分类·数据挖掘
ZCXZ12385296a10 小时前
YOLO13改进模型C3k2-SFHF实现:阻尼器类型识别与分类系统详解
人工智能·分类·数据挖掘
Fasda1234511 小时前
使用VFNet模型实现车轮缺陷检测与分类_改进模型_r50-mdconv-c3-c5_fpn_ms-2x_coco
人工智能·分类·数据挖掘
3Bronze1Pyramid13 小时前
【微分方程——传染病模型(一)】
数学建模
liangdabiao15 小时前
开源基于claude code skills搭建互联网数据分析Agent全自动化
数据挖掘·数据分析·自动化
Aloudata18 小时前
企业落地 AI 数据分析,如何做好敏感数据安全防护?
人工智能·安全·数据挖掘·数据分析·chatbi·智能问数·dataagent
liu****20 小时前
神经网络基础
人工智能·深度学习·神经网络·算法·数据挖掘·回归
张小凡vip20 小时前
数据挖掘(三) ----- JupyterHub与Jupyter Notebook的区别和安装JupyterHub
人工智能·jupyter·数据挖掘