数学建模2:回归分析预测

回归模型是什么

回归分析预测模型是一种统计方法,用于研究变量之间的关系,并通过已知数据来预测一个变量的值。回归分析通常包括自变量和因变量,目标是建立一个回归模型来描述它们之间的关系。

简单来说回归模型就是找出一条直线或曲线来尽可能地拟合 所有的样本点 ,拟合的好坏通常通过误差(例如,残差平方和)来衡量,如果拟合误差较小那么我们认为样本符合此x和y的变量关系。如下图是一个简单的线性回归模型

一、线性回归模型

线性回归指的是两个变量之间的关系是一次函数,也就是图像是直线的。

一元线性回归:

建立模型:

一元线性回归指的是只有一个变量,也就是如下模型公式

误差最小化:

这里可以采用最小二乘法来使误差最小,对与已知数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。

损失函数:

要使损失函数最小,可知:

  • 斜率k =
  • 截距b =

Python代码

python 复制代码
import numpy as np
from matplotlib import pyplot as plt


class LinearRegression:
    def __init__(self, X, Y):
        self.X = X
        self.Y = Y
        self.K = None
        self.B = None

    def caculateKB(self):
        x_mean = np.mean(self.X)
        y_mean = np.mean(self.Y)
        n = 0.0
        d = 0.0
        for x, y in zip(self.X, self.Y):
            n += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2
        self.K = n / d
        self.B = y_mean - (self.K * x_mean)
        result = [self.K, self.B]
        return result
    def caculateY(self, n):
        if self.K == None:
            self.caculateKB()
        predict = self.K * n + self.B
        return predict

X=np.array([1,2,3,4,5,6,7,8,9,10]) #定义数据集
Y=2*X+np.random.normal(1,2,10) #Y是X的线性函数加上服从正态分布的随机误差
LinearRegression = LinearRegression(X,Y)
n = 11
result = LinearRegression.caculateY(n)
print(f'预测得y({n})的值为:{result}')
#计算残差和
y_predict = [LinearRegression.K * x + LinearRegression.B for x in X]
ss_residual=sum((y_predict - Y)**2)   #残差平方和
ss_total=sum((Y-np.mean(Y))**2)     #总平方和
print(f'残差和为:{ss_residual}')
#绘图
plt.scatter(X,Y)#绘制点
plt.plot(X,y_predict,color='r')#绘制回归线
plt.show()
相关推荐
E___V___E13 小时前
数学建模清风——论文写作方法教程笔记
笔记·数学建模
有Li13 小时前
结合无监督表示学习与伪标签监督的自蒸馏方法,用于稀有疾病影像表型分类的分散感知失衡校正|文献速递-基于生成模型的数据增强与疾病监测应用
学习·分类·数据挖掘
人生の三重奏14 小时前
pandas——数据结构
人工智能·数据挖掘·pandas
墨@#≯16 小时前
回归与分类中的过拟合问题探讨与解决
机器学习·分类·回归·正则化·过拟合
Mercury Random1 天前
Loess 局部权重回归
数据挖掘·回归·kotlin
sp_fyf_20241 天前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-27
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·数据挖掘
小白熊_XBX1 天前
机器学习实战——基于粒子群优化算法(PSO)优化支持向量回归(SVR)模型(附完整代码)
人工智能·算法·机器学习·分类·数据挖掘·回归·sklearn
AI研习星球1 天前
数据分析-38-关于互联网企业黑名单的探索
深度学习·机器学习·计算机视觉·数据挖掘·数据分析·论文辅导·算法辅导
菜鸟的人工智能之路2 天前
雷达图:多维数据的可视化利器
数据挖掘·数据分析·健康医疗
快乐江小鱼2 天前
数据挖掘(三)
人工智能·python·数据挖掘