数学建模2:回归分析预测

回归模型是什么

回归分析预测模型是一种统计方法,用于研究变量之间的关系,并通过已知数据来预测一个变量的值。回归分析通常包括自变量和因变量,目标是建立一个回归模型来描述它们之间的关系。

简单来说回归模型就是找出一条直线或曲线来尽可能地拟合 所有的样本点 ,拟合的好坏通常通过误差(例如,残差平方和)来衡量,如果拟合误差较小那么我们认为样本符合此x和y的变量关系。如下图是一个简单的线性回归模型

一、线性回归模型

线性回归指的是两个变量之间的关系是一次函数,也就是图像是直线的。

一元线性回归:

建立模型:

一元线性回归指的是只有一个变量,也就是如下模型公式

误差最小化:

这里可以采用最小二乘法来使误差最小,对与已知数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。

损失函数:

要使损失函数最小,可知:

  • 斜率k =
  • 截距b =

Python代码

python 复制代码
import numpy as np
from matplotlib import pyplot as plt


class LinearRegression:
    def __init__(self, X, Y):
        self.X = X
        self.Y = Y
        self.K = None
        self.B = None

    def caculateKB(self):
        x_mean = np.mean(self.X)
        y_mean = np.mean(self.Y)
        n = 0.0
        d = 0.0
        for x, y in zip(self.X, self.Y):
            n += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2
        self.K = n / d
        self.B = y_mean - (self.K * x_mean)
        result = [self.K, self.B]
        return result
    def caculateY(self, n):
        if self.K == None:
            self.caculateKB()
        predict = self.K * n + self.B
        return predict

X=np.array([1,2,3,4,5,6,7,8,9,10]) #定义数据集
Y=2*X+np.random.normal(1,2,10) #Y是X的线性函数加上服从正态分布的随机误差
LinearRegression = LinearRegression(X,Y)
n = 11
result = LinearRegression.caculateY(n)
print(f'预测得y({n})的值为:{result}')
#计算残差和
y_predict = [LinearRegression.K * x + LinearRegression.B for x in X]
ss_residual=sum((y_predict - Y)**2)   #残差平方和
ss_total=sum((Y-np.mean(Y))**2)     #总平方和
print(f'残差和为:{ss_residual}')
#绘图
plt.scatter(X,Y)#绘制点
plt.plot(X,y_predict,color='r')#绘制回归线
plt.show()
相关推荐
天才少女爱迪生2 小时前
LLVM(Low Level Virtual Machine)介绍
python·数据挖掘
MoRanzhi120312 小时前
SciPy傅里叶变换与信号处理教程:数学原理与Python实现
python·机器学习·数学建模·数据分析·信号处理·傅里叶分析·scipy
BEOL贝尔科技12 小时前
对于生物样本库的温湿度监控是如何实现对数据进行历史数据分析的呢?
数据挖掘·数据分析
zero13_小葵司12 小时前
建立数据分析与决策体系
数据挖掘·数据分析·产品运营·产品经理·数据库架构
揭开画皮14 小时前
5.数据分析Matplotlib(数据可视化)
信息可视化·数据挖掘·数据分析
过往入尘土14 小时前
回归与分类算法全解析:从理论到实践
分类·数据挖掘·回归
哈泽尔都14 小时前
运动控制教学——5分钟学会PRM算法!
人工智能·单片机·算法·数学建模·贪心算法·机器人·无人机
Python极客之家17 小时前
基于数据挖掘的银行贷款审批预测系统
人工智能·python·机器学习·数据挖掘·毕业设计
UpYoung!18 小时前
【Typora——MD编辑器】Typora最新 V1.12.1版:轻量级 Markdown 编辑器详细图文下载安装使用教程
学习·数学建模·编辑器·运维开发·个人开发
2501_933360721 天前
覆盖动画 / 工业 / 科研!Rhino 7:专业 3D 建模的全能解决方案,新手也能上手
数学建模·3d