Imagic: Text-Based Real Image Editing with Diffusion Models

  1. 问题引入
  • 针对的是text based image editing问题,可以解决non rigid edit,即可以改变图片中object的posture;
  • 模型仅需要原图以及编辑的text,不需要mask,也是在T2I diffusion model上实现的;
  • 首先optimize text embedding,之后使用优化后的text embedding来微调整个模型,最后将优化之后的text embedding和目标text的embedding进行插值得到一个结合原图以及编辑prompt的embedding,然后进行生成得到想要的结果;
  1. methods
  • Text embedding optimization:首先获取到编辑后text的embedding e t g t e_{tgt} etgt,之后只是训练embedding部分,冻结diffusion model主体,训练很少的步数,以使得优化之后的embedding e o p t e_{opt} eopt没有发生很大的变化,便于第三步的插值操作;
  • Model fine-tuning:因为第一步只训练了很少的步数,所以生成的图片不能和原图完全一致,所以进行了全模型的训练(优化之后的embedding冻结),此时使用的是 e o p t e_{opt} eopt,但是在finetune后接的超分模型的时候使用的是 e t g t e_{tgt} etgt;
  • Text embedding interpolation:进行 e t g t , e o p t e_{tgt},e_{opt} etgt,eopt之间的插值: e ‾ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \overline{e} = \eta\cdot e_{tgt} + (1 - \eta)\cdot e_{opt} e=η⋅etgt+(1−η)⋅eopt,以这个作为最后的embedding来生成,后接的超分模型还是使用 e t g t e_{tgt} etgt
相关推荐
AndrewHZ12 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
绝顶大聪明10 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
Danceful_YJ10 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
甄卷13 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法
豆豆13 小时前
神经网络构建
人工智能·深度学习·神经网络
一勺汤15 小时前
多尺度频率辅助类 Mamba 线性注意力模块(MFM),融合频域和空域特征,提升多尺度、复杂场景下的目标检测能力
深度学习·yolo·yolov12·yolo12·yolo12改进·小目标·mamba like
霖0018 小时前
神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
人工智能·pytorch·深度学习·神经网络·机器学习·fpga开发
神经星星18 小时前
英伟达实现原子级蛋白质设计突破,高精度生成多达800个残基的蛋白质
人工智能·深度学习·机器学习