Imagic: Text-Based Real Image Editing with Diffusion Models

  1. 问题引入
  • 针对的是text based image editing问题,可以解决non rigid edit,即可以改变图片中object的posture;
  • 模型仅需要原图以及编辑的text,不需要mask,也是在T2I diffusion model上实现的;
  • 首先optimize text embedding,之后使用优化后的text embedding来微调整个模型,最后将优化之后的text embedding和目标text的embedding进行插值得到一个结合原图以及编辑prompt的embedding,然后进行生成得到想要的结果;
  1. methods
  • Text embedding optimization:首先获取到编辑后text的embedding e t g t e_{tgt} etgt,之后只是训练embedding部分,冻结diffusion model主体,训练很少的步数,以使得优化之后的embedding e o p t e_{opt} eopt没有发生很大的变化,便于第三步的插值操作;
  • Model fine-tuning:因为第一步只训练了很少的步数,所以生成的图片不能和原图完全一致,所以进行了全模型的训练(优化之后的embedding冻结),此时使用的是 e o p t e_{opt} eopt,但是在finetune后接的超分模型的时候使用的是 e t g t e_{tgt} etgt;
  • Text embedding interpolation:进行 e t g t , e o p t e_{tgt},e_{opt} etgt,eopt之间的插值: e ‾ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \overline{e} = \eta\cdot e_{tgt} + (1 - \eta)\cdot e_{opt} e=η⋅etgt+(1−η)⋅eopt,以这个作为最后的embedding来生成,后接的超分模型还是使用 e t g t e_{tgt} etgt
相关推荐
补三补四23 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪1 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
贤小二AI2 小时前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
意.远2 小时前
在PyTorch中使用GPU加速:从基础操作到模型部署
人工智能·pytorch·python·深度学习
Uzuki8 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
snowfoootball13 小时前
基于 Ollama DeepSeek、Dify RAG 和 Fay 框架的高考咨询 AI 交互系统项目方案
前端·人工智能·后端·python·深度学习·高考
odoo中国13 小时前
深度学习 Deep Learning 第15章 表示学习
人工智能·深度学习·学习·表示学习
橙色小博13 小时前
长短期记忆神经网络(LSTM)基础学习与实例:预测序列的未来
人工智能·python·深度学习·神经网络·lstm
船长@Quant14 小时前
PyTorch量化进阶教程:第六章 模型部署与生产化
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib