Imagic: Text-Based Real Image Editing with Diffusion Models

  1. 问题引入
  • 针对的是text based image editing问题,可以解决non rigid edit,即可以改变图片中object的posture;
  • 模型仅需要原图以及编辑的text,不需要mask,也是在T2I diffusion model上实现的;
  • 首先optimize text embedding,之后使用优化后的text embedding来微调整个模型,最后将优化之后的text embedding和目标text的embedding进行插值得到一个结合原图以及编辑prompt的embedding,然后进行生成得到想要的结果;
  1. methods
  • Text embedding optimization:首先获取到编辑后text的embedding e t g t e_{tgt} etgt,之后只是训练embedding部分,冻结diffusion model主体,训练很少的步数,以使得优化之后的embedding e o p t e_{opt} eopt没有发生很大的变化,便于第三步的插值操作;
  • Model fine-tuning:因为第一步只训练了很少的步数,所以生成的图片不能和原图完全一致,所以进行了全模型的训练(优化之后的embedding冻结),此时使用的是 e o p t e_{opt} eopt,但是在finetune后接的超分模型的时候使用的是 e t g t e_{tgt} etgt;
  • Text embedding interpolation:进行 e t g t , e o p t e_{tgt},e_{opt} etgt,eopt之间的插值: e ‾ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \overline{e} = \eta\cdot e_{tgt} + (1 - \eta)\cdot e_{opt} e=η⋅etgt+(1−η)⋅eopt,以这个作为最后的embedding来生成,后接的超分模型还是使用 e t g t e_{tgt} etgt
相关推荐
落雨盛夏4 小时前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
就这个丶调调10 小时前
VLLM部署全部参数详解及其作用说明
深度学习·模型部署·vllm·参数配置
轴测君11 小时前
SE Block(Squeeze and Excitation Block)
深度学习·机器学习·计算机视觉
飞Link13 小时前
深度学习里程碑:ResNet(残差网络)从理论到实战全解析
人工智能·python·深度学习
翱翔的苍鹰14 小时前
完整的“RNN + jieba 中文情感分析”项目之一:终极版
人工智能·rnn·深度学习
茶栀(*´I`*)15 小时前
PyTorch实战:CNN实现CIFAR-10图像分类的思路与优化
pytorch·深度学习·cnn
爱喝可乐的老王15 小时前
深度学习初认识
人工智能·深度学习
孤狼warrior17 小时前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
努力毕业的小土博^_^17 小时前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
Pith_17 小时前
模式识别与机器学习复习笔记(下-深度学习篇)
笔记·深度学习·机器学习