Imagic: Text-Based Real Image Editing with Diffusion Models

  1. 问题引入
  • 针对的是text based image editing问题,可以解决non rigid edit,即可以改变图片中object的posture;
  • 模型仅需要原图以及编辑的text,不需要mask,也是在T2I diffusion model上实现的;
  • 首先optimize text embedding,之后使用优化后的text embedding来微调整个模型,最后将优化之后的text embedding和目标text的embedding进行插值得到一个结合原图以及编辑prompt的embedding,然后进行生成得到想要的结果;
  1. methods
  • Text embedding optimization:首先获取到编辑后text的embedding e t g t e_{tgt} etgt,之后只是训练embedding部分,冻结diffusion model主体,训练很少的步数,以使得优化之后的embedding e o p t e_{opt} eopt没有发生很大的变化,便于第三步的插值操作;
  • Model fine-tuning:因为第一步只训练了很少的步数,所以生成的图片不能和原图完全一致,所以进行了全模型的训练(优化之后的embedding冻结),此时使用的是 e o p t e_{opt} eopt,但是在finetune后接的超分模型的时候使用的是 e t g t e_{tgt} etgt;
  • Text embedding interpolation:进行 e t g t , e o p t e_{tgt},e_{opt} etgt,eopt之间的插值: e ‾ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \overline{e} = \eta\cdot e_{tgt} + (1 - \eta)\cdot e_{opt} e=η⋅etgt+(1−η)⋅eopt,以这个作为最后的embedding来生成,后接的超分模型还是使用 e t g t e_{tgt} etgt
相关推荐
冰西瓜6003 小时前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
csdn_life1810 小时前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间10 小时前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
Sunhen_Qiletian11 小时前
深度学习之模型的部署、web框架 服务端及客户端案例
人工智能·深度学习
LaughingZhu12 小时前
Product Hunt 每日热榜 | 2026-02-15
人工智能·经验分享·深度学习·神经网络·产品运营
cyforkk14 小时前
YAML 配置文件中的常见陷阱:内联字典与块映射混用
人工智能·深度学习·机器学习
月光有害15 小时前
深入解析批归一化 (Batch Normalization): 稳定并加速深度学习的基石
开发语言·深度学习·batch
Suryxin.15 小时前
从0开始复现nano-vllm「llm_engine.py」
人工智能·python·深度学习·ai·vllm
冰西瓜60016 小时前
深度学习的数学原理(九)—— 神经网络为什么能学习特征?
深度学习·神经网络·学习
Suryxin.16 小时前
从0开始复现nano-vllm「model_runner-py」下半篇之核心数据编排与执行引擎调度
人工智能·pytorch·深度学习·ai·vllm