Imagic: Text-Based Real Image Editing with Diffusion Models

  1. 问题引入
  • 针对的是text based image editing问题,可以解决non rigid edit,即可以改变图片中object的posture;
  • 模型仅需要原图以及编辑的text,不需要mask,也是在T2I diffusion model上实现的;
  • 首先optimize text embedding,之后使用优化后的text embedding来微调整个模型,最后将优化之后的text embedding和目标text的embedding进行插值得到一个结合原图以及编辑prompt的embedding,然后进行生成得到想要的结果;
  1. methods
  • Text embedding optimization:首先获取到编辑后text的embedding e t g t e_{tgt} etgt,之后只是训练embedding部分,冻结diffusion model主体,训练很少的步数,以使得优化之后的embedding e o p t e_{opt} eopt没有发生很大的变化,便于第三步的插值操作;
  • Model fine-tuning:因为第一步只训练了很少的步数,所以生成的图片不能和原图完全一致,所以进行了全模型的训练(优化之后的embedding冻结),此时使用的是 e o p t e_{opt} eopt,但是在finetune后接的超分模型的时候使用的是 e t g t e_{tgt} etgt;
  • Text embedding interpolation:进行 e t g t , e o p t e_{tgt},e_{opt} etgt,eopt之间的插值: e ‾ = η ⋅ e t g t + ( 1 − η ) ⋅ e o p t \overline{e} = \eta\cdot e_{tgt} + (1 - \eta)\cdot e_{opt} e=η⋅etgt+(1−η)⋅eopt,以这个作为最后的embedding来生成,后接的超分模型还是使用 e t g t e_{tgt} etgt
相关推荐
余生H42 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
罗小罗同学1 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
YRr YRr2 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
HPC_fac130520678165 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
老艾的AI世界13 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲