基于matlab处理语音信号

matlab处理语音信号

matlab有处理语音信号的函数wavread,不过已经过时了,现在处理语音信号的函数名称是audioread选取4.wav进行处理(只有4的通道数为1)

利用hamming窗设计滤波器

Ham.m

function [N,h,H,w] = Ham (fp,fs,fc)wp = 2********* pi********* fp****/**** fc;ws = 2********* pi********* fs****/**** fc;wc = (ws****+**** wp)/ 2;dw = ws****-**** wp;N = 8********* pi****/**** dw;N = round(N);%向上取整 h = fir1(N****-**** 1,wc****/**** pi,'low',hann(N));H = fft(h,512);w = 2********* (0:511)/ 512;end

调用函数

clear;clc;[x,Fs] = audioread('4.wav');x = x(1:4096,:);X = fft(x);X = X****'**** ;

% 设置数字低通滤波器,选汉宁窗 fp = 1000;fs =1200;fc = 44100;%抽样频率 [N,h,H,w] = Ham(fp,fs,fc);

y = filter(h,1,x);Y = ifft(y);

figure(1)subplot(221)stem(x)title('原信号')subplot(222)stem(y)title('滤波后的信号')subplot(223)stem(abs(X))title('原信号频谱')subplot(224)stem(abs(Y))title('滤波后的信号频谱')

figure(2);stem(0:N****-**** 1,h);xlabel('n');ylabel('h(n)');axis([0 N****-**** 1 - 0.02 0.06]);title('汉宁窗的设计');grid on;

figure(3);subplot(2,1,1);plot(w,20********* log10(abs(H)));xlabel('\omega/\pi');ylabel('幅度dB');title('幅度特性');subplot(2,1,2);freqz(h)xlabel('\omega/\pi');ylabel('相位(度)');title('相位特性');

% 播放音频% sound(x,Fs)% sound(y,Fs)

%倒放音频 xd=flipud(x);yd=flipud(y);sound(xd,Fs)sound(yd,Fs)

Hamming窗如下

滤波器的频率响应如下

可以看出原波形与处理后的波形(看起来有点怪怪的)

补充:

倒放音频时参考

将数组从上向下翻转 - MATLAB flipud - MathWorks 中国​ww2.mathworks.cn/help/matlab/ref/flipud.html

另外发现在命令行中输入filterDesigner并回车会弹出一个窗口

这样就可以用鼠标点点点,轻松设计滤波器了

5/2补充:

利用filterDesigner

选择第一个滤波器设计函数

保存为Filter_FIR.m

function Hd = Filter_FIR**%FILTER_FIR 返回离散时间滤波器对象。**

% MATLAB Code% Generated by MATLAB(R) 9.9 and DSP System Toolbox 9.11.% Generated on: 02-May-2023 22:45:33

% Equiripple FIR Lowpass filter designed using the FIRPM function.

% All frequency values are in Hz. Fs = 48000; % Sampling Frequency

Fpass = 9600; % Passband Frequency Fstop = 12000; % Stopband Frequency Dpass = 0.057501127785; % Passband Ripple Dstop = 0.0001; % Stopband Attenuation dens = 16; % Density Factor

% Calculate the order from the parameters using FIRPMORD. [N, Fo, Ao, W] = firpmord([Fpass, Fstop]/ (Fs****/**** 2), [1 0], [Dpass, Dstop]);

% Calculate the coefficients using the FIRPM function. b = firpm(N, Fo, Ao, W, {dens});Hd = dfilt.dffir(b);

% [EOF]

main.m

clear;clc;[x,Fs] = audioread('4.wav');x = x(1:4096,:);X = fft(x);X = X****'**** ;

y = filter(Filter_IIR,x);Y = ifft(y);

subplot(221)stem(x)title('原信号')subplot(222)stem(y)title('滤波后的信号')subplot(223)stem(abs(X))title('原信号频谱')subplot(224)stem(abs(Y))title('滤波后的信号频谱')

相关推荐
J_Xiong011716 分钟前
【LLMs篇】14:扩散语言模型的理论优势与局限性
人工智能·语言模型·自然语言处理
红衣小蛇妖1 小时前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白1 小时前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
IT_陈寒2 小时前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin2 小时前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
盛寒3 小时前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理