吴恩达深度学习(9)

经典的神经网络:

残差网络(ResNet)

太深的神经网络容易出现梯度消失与梯度爆炸等问题。

跳跃连接,能从一层中得到激活并将其传递给下一层,甚至更深的网络层。利用这个可以训练网络层很深很深的残差网络(ResNet:使用了残差结构的网络)。

为什么使用残差网络

上述证明意味着残差块比较容易学习恒等函数,添加残差块到中间或者尾部并不影响网络的表现。残差网络两个有效性在于:让额外层学习起恒等函数非常简单,并且总能保证他几乎不会影响总体的表现,有时候甚至可以提升网络的表现。

网络中的网络与1X1卷积

1X1卷积可以做什么

改变长和宽的大小,可以通过池化层实现,想改变通道数,需要通过1X1卷积

初始网络动机:

使用1X1可以降低计算成本,只要使用合理,不会对数据造成影响。

初始网络(Inception)

Inception模块的输入一般是激活值,或者是来自上一个的输出。

Inception网络就是多次重复使用Inception模块

MobileNets网络(深度可分离卷积):可以大大减小计算量

深度可分离卷积由深度卷积逐点卷积两个部分构成

  • 首先要看一下深度卷积

  • 接下来要看逐点卷积:

用1X1X3的核,先相乘再相加。一共用5个核

网络的升级:加入残差网络、在块前加入一个扩展层

EfficientNet网络:根据条件,调整网络的大小

使用开源码:

迁移学习:

可以下载训练好权重的网络迁移到自己的任务上,

数据增强的方法:

1、镜像、裁剪、旋转、局部弯曲

2、色彩变化(在红、绿、蓝通道上加上扰动)、PCA色彩增强

相关推荐
闲看云起7 分钟前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
韩曙亮1 小时前
【自动驾驶】自动驾驶概述 ⑨ ( 自动驾驶软件系统概述 | 预测系统 | 决策规划 | 控制系统 )
人工智能·机器学习·自动驾驶·激光雷达·决策规划·控制系统·预测系统
深圳南柯电子1 小时前
车载通信设备EMC整改:高频问题与AI辅助诊断方案|深圳南柯电子
网络·人工智能·互联网·实验室·emc
sealaugh322 小时前
AI(学习笔记第十二课) 使用langsmith的agents
人工智能·笔记·学习
科技百宝箱2 小时前
03-AI Agent全栈架构系统化落地指南
人工智能·架构
信息快讯2 小时前
【机器学习赋能的智能光子学器件系统研究与应用】
人工智能·神经网络·机器学习·光学
mit6.8242 小时前
[Agent开发平台] 后端的后端 | MySQL | Redis | RQ | idgen | ObjectStorage
人工智能·python
GIOTTO情3 小时前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术3 小时前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码3 小时前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉