吴恩达深度学习(9)

经典的神经网络:

残差网络(ResNet)

太深的神经网络容易出现梯度消失与梯度爆炸等问题。

跳跃连接,能从一层中得到激活并将其传递给下一层,甚至更深的网络层。利用这个可以训练网络层很深很深的残差网络(ResNet:使用了残差结构的网络)。

为什么使用残差网络

上述证明意味着残差块比较容易学习恒等函数,添加残差块到中间或者尾部并不影响网络的表现。残差网络两个有效性在于:让额外层学习起恒等函数非常简单,并且总能保证他几乎不会影响总体的表现,有时候甚至可以提升网络的表现。

网络中的网络与1X1卷积

1X1卷积可以做什么

改变长和宽的大小,可以通过池化层实现,想改变通道数,需要通过1X1卷积

初始网络动机:

使用1X1可以降低计算成本,只要使用合理,不会对数据造成影响。

初始网络(Inception)

Inception模块的输入一般是激活值,或者是来自上一个的输出。

Inception网络就是多次重复使用Inception模块

MobileNets网络(深度可分离卷积):可以大大减小计算量

深度可分离卷积由深度卷积逐点卷积两个部分构成

  • 首先要看一下深度卷积

  • 接下来要看逐点卷积:

用1X1X3的核,先相乘再相加。一共用5个核

网络的升级:加入残差网络、在块前加入一个扩展层

EfficientNet网络:根据条件,调整网络的大小

使用开源码:

迁移学习:

可以下载训练好权重的网络迁移到自己的任务上,

数据增强的方法:

1、镜像、裁剪、旋转、局部弯曲

2、色彩变化(在红、绿、蓝通道上加上扰动)、PCA色彩增强

相关推荐
carpell20 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人33 分钟前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu43 分钟前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
Tianyanxiao44 分钟前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
rit84324991 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点1 小时前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
科技小E1 小时前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域2 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln2 小时前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
GiantGo2 小时前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化