吴恩达深度学习(9)

经典的神经网络:

残差网络(ResNet)

太深的神经网络容易出现梯度消失与梯度爆炸等问题。

跳跃连接,能从一层中得到激活并将其传递给下一层,甚至更深的网络层。利用这个可以训练网络层很深很深的残差网络(ResNet:使用了残差结构的网络)。

为什么使用残差网络

上述证明意味着残差块比较容易学习恒等函数,添加残差块到中间或者尾部并不影响网络的表现。残差网络两个有效性在于:让额外层学习起恒等函数非常简单,并且总能保证他几乎不会影响总体的表现,有时候甚至可以提升网络的表现。

网络中的网络与1X1卷积

1X1卷积可以做什么

改变长和宽的大小,可以通过池化层实现,想改变通道数,需要通过1X1卷积

初始网络动机:

使用1X1可以降低计算成本,只要使用合理,不会对数据造成影响。

初始网络(Inception)

Inception模块的输入一般是激活值,或者是来自上一个的输出。

Inception网络就是多次重复使用Inception模块

MobileNets网络(深度可分离卷积):可以大大减小计算量

深度可分离卷积由深度卷积逐点卷积两个部分构成

  • 首先要看一下深度卷积

  • 接下来要看逐点卷积:

用1X1X3的核,先相乘再相加。一共用5个核

网络的升级:加入残差网络、在块前加入一个扩展层

EfficientNet网络:根据条件,调整网络的大小

使用开源码:

迁移学习:

可以下载训练好权重的网络迁移到自己的任务上,

数据增强的方法:

1、镜像、裁剪、旋转、局部弯曲

2、色彩变化(在红、绿、蓝通道上加上扰动)、PCA色彩增强

相关推荐
づ安眠丶乐灬4 小时前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉
2503_928411564 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
MarkHD4 小时前
智能体在车联网中的应用 第1天 车联网完全导论:从核心定义到架构全景,构建你的知识坐标系
人工智能·架构
中科米堆4 小时前
塑料制品企业部署自动化三维扫描仪设备,解决注塑件变形问题-中科米堆CASAIM
人工智能
星图云4 小时前
从数据累积到精准解析:AI解译打造遥感数据高效利用新范式
人工智能·卫星遥感
飞哥数智坊4 小时前
AI 大厂的“护城河”,也会成为它们的束缚
人工智能·创业
BB_CC_DD5 小时前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
珠海西格电力5 小时前
零碳园区物流园区架构协同方案
人工智能·物联网·架构·能源
向成科技5 小时前
新品 | 向成电子XC3576M小体积主板,全面适配国产麒麟操作系统
人工智能·ai·解决方案·硬件·国产操作系统·麒麟系统·主板