西南交通大学【机器学习实验2】

实验目的

理解和掌握线性回归模型基本原理和方法,学会使用线性回归模型对分析问题进行建模和预测,掌握线性问题上模型评估方法。

实验内容

假设线性模型为y= w 1 x+ w 2,在给定数据集上训练模型,得到模型参数,计算模型在测试集上均方误差,并将训练数据、测试数据、训练模型绘制在一张图中。

假设二次线性模型为y= w 1 x 2 + w 2 x+ w 3,在给定数据集上训练模型,得到模型参数,计算模型在测试集上均方误差,并将训练数据、测试数据、训练模型绘制在一张图中。

实验环境

python

numpy

matplotlib

实验代码

代码

python 复制代码
import numpy as np

import matplotlib.pyplot as plt

import matplotlib





matplotlib.use('TkAgg')



# 读入训练数据

train_dataset = np.genfromtxt("experiment_02_training_set.csv", delimiter=',', skip_header=1)

# 得到数据条数

numberOfTrainData = train_dataset.shape[0]

# 将训练数据第一列和一个全为1的列拼接得到x

x = np.hstack((train_dataset[:, 0:1], np.ones((numberOfTrainData, 1))))



# 计算w

w = np.linalg.inv(x.T @ x) @ x.T @ train_dataset[:, 1:2]

# 打印模型参数

print(f"模型参数: w1: {w[0, 0]: .4f}    w2: {w[1, 0]: .4f}")



# 读入测试数据

test_dataset = np.genfromtxt("experiment_02_testing_set.csv", delimiter=',', skip_header=1)

# 得到测试数据条数

numberOfTestData = test_dataset.shape[0]

# 将测试数据第一列和一个全为1的列拼接得到x

X = np.hstack((test_dataset[:, 0:1], np.ones((numberOfTestData, 1))))



# 计算Y

Y = X @ w

# 求MSE

diff = Y - test_dataset[:, 1:2]

diff = diff * diff

MSE = np.sum(diff) / numberOfTestData

print(f"MSE: {MSE: .4f}")



# 画图 准备好训练数据 测试数据 模型数据

train_x_scatter = train_dataset[:, 0:1]

train_y_scatter = train_dataset[:, 1:2]

test_x_scatter = test_dataset[:, 0:1]

test_y_scatter = test_dataset[:, 1:2]

x_line = np.linspace(0, 1, 50)

y_line = w[0] * x_line + w[1]



# 调整参数生成图像

plt.scatter(train_x_scatter, train_y_scatter, color='r', alpha=0.7, edgecolors='white', s=10, label='Train Data')

plt.scatter(test_x_scatter, test_y_scatter, color='g', alpha=0.7, edgecolors='white', s=10, label='Test Data')

plt.plot(x_line, y_line, color='b', linewidth=1.5, label='Model')

plt.title("Train Test Model", fontsize=14)

plt.xlabel("X-axis", fontsize=12)

plt.ylabel("Y-axis", fontsize=12)

plt.legend(loc='upper right', frameon=True)

plt.grid(alpha=0.3, linestyle=':')

plt.tight_layout()

plt.show()

代码

python 复制代码
import numpy as np

import matplotlib.pyplot as plt

import matplotlib





matplotlib.use("TkAgg")



# 读入训练数据

train_dataset = np.genfromtxt("experiment_02_training_set.csv", delimiter=',', skip_header=1)

# 得到数据条数

numberOfTrainData = train_dataset.shape[0]

# 得到一次项

x2 = train_dataset[:, 0:1]

# 将二次项作为x1

x1 = x2 * x2

# 将x1和x2和全1的列拼接得到x

x = np.hstack((x1, x2, np.ones((numberOfTrainData, 1))))



# 计算w

w = np.linalg.inv(x.T @ x) @ x.T @ train_dataset[:, 1:2]

# 打印模型参数

print(f"模型参数: w1: {w[0, 0]: .4f}    w2: {w[1, 0]: .4f}    w3: {w[2, 0]: .4f}")



# 读入测试数据

test_dataset = np.genfromtxt("experiment_02_testing_set.csv", delimiter=',', skip_header=1)

# 得到测试数据条数

numberOfTestData = test_dataset.shape[0]

# 得到一次项

X2 = test_dataset[:, 0:1]

# 将二次项作为X1

X1 = X2 * X2

# 拼接得到X

X = np.hstack((X1, X2, np.ones((numberOfTestData, 1))))



# 计算Y

Y = X @ w

# 计算MSE

diff = Y - test_dataset[:, 1:2]

diff = diff * diff

MSE = np.sum(diff) / numberOfTestData

print(f"MSE: {MSE: .4f}")



# 画图 准备训练数据 测试数据 模型数据

train_x_scatter = train_dataset[:, 0:1]

train_y_scatter = train_dataset[:, 1:2]

test_x_scatter = test_dataset[:, 0:1]

test_y_scatter = test_dataset[:, 1:2]

x_line = np.linspace(0, 1, 50)

y_line = w[0] * x_line * x_line + w[1] * x_line + w[2]



# 调整参数生成图像

plt.scatter(train_x_scatter, train_y_scatter, color='r', alpha=0.7, edgecolors='white', s=10, label='Train Data')

plt.scatter(test_x_scatter, test_y_scatter, color='g', alpha=0.7, edgecolors='white', s=10, label='Test Data')

plt.plot(x_line, y_line, color='b', linewidth=1.5, label="Model")

plt.title("Train Test Model", fontsize=14)

plt.xlabel("X-axis", fontsize=12)

plt.ylabel("Y-axis", fontsize=12)

plt.legend(loc='upper right', frameon=True)

plt.grid(alpha=0.3, linestyle=':')

plt.tight_layout()

plt.show()

结果分析

模型参数为:w1 = -20.1656 w2 = 205.4981

测试集均方误差为:MSE = 4.6256

绘图结果为:

模型参数为:w1 = -30.7577 w2 = 10.7791 w3 = 200.3408

测试集均方误差为:MSE = 0.1031

绘图结果为:

相关推荐
roman_日积跬步-终至千里19 小时前
【模式识别与机器学习(11)】数据预处理(第三部分):高级技术与质量保证
人工智能·机器学习·支持向量机
HX43619 小时前
Swift - Sendable (not just Sendable)
人工智能·ios·全栈
大白的编程笔记19 小时前
大语言模型(Large Language Model, LLM)系统详解
人工智能·语言模型·自然语言处理
凋零蓝玫瑰19 小时前
几何:数学世界的空间密码
人工智能·算法·机器学习
roman_日积跬步-终至千里19 小时前
【模式识别与机器学习(13)】神经网络与深度学习(二):卷积神经网络、正则化、优化算法、循环神经网络
深度学习·神经网络·机器学习
小程故事多_8019 小时前
基于LangGraph与Neo4j构建智能体级GraphRAG:打造下一代膳食规划助手
人工智能·aigc·neo4j
Bdygsl19 小时前
数字图像处理总结 Day 2 —— 数字化
图像处理·人工智能·计算机视觉
LDG_AGI19 小时前
【推荐系统】深度学习训练框架(九):推荐系统与LLM在Dataset、Tokenizer阶段的异同
人工智能·深度学习·算法·机器学习·推荐算法
智谱开放平台19 小时前
让 AI 真正懂仓库:如何用 CLAUDE.md 将 Claude Code 的工作效率发挥到极致
人工智能·claude