win11环境下成功安装mamba

文章目录

  • [1. Mamba环境搭建](#1. Mamba环境搭建)
  • [2. triton安装](#2. triton安装)
  • [3. causal_conv1d安装](#3. causal_conv1d安装)
    • [3.1 下载causal_conv1d工程文件源码](#3.1 下载causal_conv1d工程文件源码)
    • [3.2 修改setup.py文件](#3.2 修改setup.py文件)
    • [3.3 安装 causal_conv1d](#3.3 安装 causal_conv1d)
  • [4. Mamba安装](#4. Mamba安装)
    • [4.1 下载mamba工程文件源码](#4.1 下载mamba工程文件源码)
    • [4.2 修改setup.py文件](#4.2 修改setup.py文件)
    • [4.3 安装 mamba](#4.3 安装 mamba)
  • [5. 查看所有成功安装的库](#5. 查看所有成功安装的库)
  • [6. 测试mamba安装是否成功](#6. 测试mamba安装是否成功)
    • [6.1 测试成功](#6.1 测试成功)
    • [6.2 测试失败:No module named 'causal_conv1d_cuda' 或 'selective_scan_cuda'](#6.2 测试失败:No module named 'causal_conv1d_cuda' 或 'selective_scan_cuda')
    • [6.3 解决方案](#6.3 解决方案)
  • [7. 卸载causal_conv1d和mamba-ssm](#7. 卸载causal_conv1d和mamba-ssm)
  • [8. 下载所需文件](#8. 下载所需文件)

1. Mamba环境搭建

参考:https://blog.csdn.net/yyywxk/article/details/136071016

javascript 复制代码
conda clean --all
conda create -n mamba_env python=3.10.13
conda activate mamba_env
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging

2. triton安装

下载triton文件:https://github.com/PrashantSaikia/Triton-for-Windows/tree/main

javascript 复制代码
# 激活刚才创建的mamba环境
conda activate mamba_env

# 安装triton
pip install 【文件路径】\triton-2.0.0-cp310-cp310-win_amd64.whl
# 如:pip install D:\mamba\triton-2.0.0-cp310-cp310-win_amd64.whl

3. causal_conv1d安装

3.1 下载causal_conv1d工程文件源码

下载causal_conv1d工程文件源码:https://github.com/Dao-AILab/causal-conv1d/releases

这里有各个版本的causal_conv1d,找到v1.1.1

进入v1.1.1资源界面:

拉到最后,点击Source code(zip),直接下载

3.2 修改setup.py文件

解压causal-conv1d-1.1.1.zip文件

将里面的源码setup.py进行以下改动:

参考:https://blog.csdn.net/yyywxk/article/details/136071016https://blog.csdn.net/m0_59115667/article/details/137794459

将下面的代码

javascript 复制代码
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"

修改为

javascript 复制代码
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "FALSE"
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "FALSE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "FALSE"

保存

3.3 安装 causal_conv1d

javascript 复制代码
# 激活刚才创建的mamba环境
conda activate mamba_env

# 打开causal_conv1d所在文件夹
cd/d D:\Anaconda\Mamba\causal-conv1d-1.1.1      # 改成你自己的causal-conv1d-1.1.1文件路径

# 安装
pip install . 或者  python setup.py install

4. Mamba安装

4.1 下载mamba工程文件源码

下载mamba工程文件源码:https://github.com/state-spaces/mamba/releases?page=2

步骤跟causal_conv1d一样,这里有各个版本的mamba,找到v1.1.1

4.2 修改setup.py文件

解压mamba-1.1.1文件

mamba工程文件的源码setup.py中我们要进行以下改动:
将下面的代码

javascript 复制代码
FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "TRUE"

修改为

javascript 复制代码
FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "FALSE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "FALSE"

4.3 安装 mamba

javascript 复制代码
# 激活mamba环境
conda activate mamba_env

# 打开文件夹
cd/d D:\Anaconda\Mamba\mamba-1.1.1    # 改成你自己的mamba-1.1.1文件路径

# 安装
pip install . 或者  python setup.py install

5. 查看所有成功安装的库

6. 测试mamba安装是否成功

javascript 复制代码
# 激活mamba环境
conda activate mamba_env

# 进入python编译
python

# 加载库
import torch
import causal_conv1d
from mamba_ssm import Mamba


# 代码函数
batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
    # This module uses roughly 3 * expand * d_model^2 parameters
    d_model=dim, # Model dimension d_model
    d_state=16,  # SSM state expansion factor
    d_conv=4,    # Local convolution width
    expand=2,    # Block expansion factor
).to("cuda")
y = model(x)
assert y.shape == x.shape
print('success')

6.1 测试成功

6.2 测试失败:No module named 'causal_conv1d_cuda' 或 'selective_scan_cuda'

from mamba_ssm import Mamba不成功

报错:ModuleNotFoundError: No module named 'causal_conv1d_cuda' || 'selective_scan_cuda'

6.3 解决方案

  1. 根据报错文件路径,找到causal_conv1d_interface.pyselective_scan_interface.py文件
  2. 用vscode或其他编辑软件打开
  3. 注释或修改报错内容

a. causal_conv1d_interface.py和selective_scan_interface.py注释

javascript 复制代码
文件:causal_conv1d_interface.py
# import causal_conv1d_cuda

文件:selective_scan_interface.py
# import causal_conv1d_cuda
# import selective_scan_cuda

b. 修改causal_conv1d_interface.py中的causal_conv1d_fn函数

javascript 复制代码
def causal_conv1d_fn(x, weight, bias=None, seq_idx=None, activation=None):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    seq_idx: (batch, seqlen)
    activation: either None or "silu" or "swish"

    out: (batch, dim, seqlen)
    """
    return CausalConv1dFn.apply(x, weight, bias, seq_idx, activation)

修改为

javascript 复制代码
def causal_conv1d_fn(x, weight, bias=None, seq_idx=None, activation=None):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    seq_idx: (batch, seqlen)
    activation: either None or "silu" or "swish"

    out: (batch, dim, seqlen)
    """
    return causal_conv1d_ref(x, weight, bias, activation)

c. 修改selective_scan_interface.py中的selective_scan_fn和mamba_inner_fn函数

javascript 复制代码
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
                     return_last_state=False):
    """if return_last_state is True, returns (out, last_state)
    last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
    not considered in the backward pass.
    """
    return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
    
def mamba_inner_fn(
    xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
    out_proj_weight, out_proj_bias,
    A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
    C_proj_bias=None, delta_softplus=True
):
    return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
                              out_proj_weight, out_proj_bias,
                              A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)

修改为

javascript 复制代码
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
                     return_last_state=False):
    """if return_last_state is True, returns (out, last_state)
    last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
    not considered in the backward pass.
    """
    return selective_scan_ref(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
    
def mamba_inner_fn(
    xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
    out_proj_weight, out_proj_bias,
    A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
    C_proj_bias=None, delta_softplus=True
):
    return mamba_inner_ref(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
                              out_proj_weight, out_proj_bias,
                              A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)

7. 卸载causal_conv1d和mamba-ssm

上述对你的电脑来说,可能也不会成功,......方便卸载:)再试试别的办法吧~~

javascript 复制代码
pip uninstall causal_conv1d
pip uninstall mamba-ssm

8. 下载所需文件

不想去官网下载的,可以直接网盘下载我已经修改好setup.py文件所有文件。

链接:https://pan.baidu.com/s/1NKoqUPIGd_UexBdDFZxljQ

提取码:3asf

相关推荐
巴里巴气2 分钟前
安装GPU版本的Pytorch
人工智能·pytorch·python
wt_cs23 分钟前
银行回单ocr api集成解析-图像文字识别-文字识别技术
开发语言·python
_WndProc1 小时前
【Python】Flask网页
开发语言·python·flask
互联网搬砖老肖1 小时前
Python 中如何使用 Conda 管理版本和创建 Django 项目
python·django·conda
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
大模型真好玩1 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
前端付豪1 小时前
11、打造自己的 CLI 工具:从命令行到桌面效率神器
后端·python
前端付豪1 小时前
12、用类写出更可控、更易扩展的爬虫框架🕷
后端·python
江太翁1 小时前
Pytorch torch
人工智能·pytorch·python
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归