Pytorch Note

cat函数:

cat函数不会增加维度,默认按照dim=0连接张量

stack函数:

stack函数会增加一个维度

nn.Linear的默认输入:

torch中默认输入一定要为tensor,并且默认是tensor.float32,此外device如果没有model.to(device)放到gpu上面默认会在cpu上运行,如果把模型放到了device上面,那么输入的向量也要放到gpu上面

torch的eval模式和train模式:

使用model.eval模式,模型会进入评估模式,在这个时候,会丢弃以下行为:

  1. Dropout:在评估模式下,Dropout 层不会丢弃任何神经元,所有的神经元都会参与计算。

  2. Batch Normalization:在评估模式下,Batch Normalization 层会使用训练过程中累积的均值和方差来进行归一化,而不是使用当前批次的数据。

使用model.train模式,模型会进入训练模式,这时候模型会启用Dropout和Batch Normalization

torch.gather函数:
复制代码
torch.gather(input, dim, index) → Tensor

假设input的shape为(a*b*c),index的shape需要为(a*b,x),这时候指定dim=2,就会把dim=2这一维度的向量按照x的下标收集起来1

python 复制代码
import torch

# 创建一个形状为 (3, 4) 的输入张量
input = torch.tensor([[1, 2, 3, 4],
                      [5, 6, 7, 8],
                      [9, 10, 11, 12]])

# 创建一个形状为 (3, 2) 的索引张量
index = torch.tensor([[0, 1],
                      [1, 2],
                      [2, 3]])

# 沿着第 1 维(列)收集元素
output = torch.gather(input, dim=1, index=index)

print(output)

"""
tensor([[ 1,  2],
        [ 6,  7],
        [11, 12]])
"""
torch.distributions.Categorical函数:

torch.distributions.Categorical(probs=None, logits=None)

probs代表概率,要求加起来为1,logits代表对数概率,不一定要加起来为1,torch会自动计算让他们加起来为1,虽然用np.random.choice也能实现这个效果,但是numpy是不能进行梯度计算的

python 复制代码
action_dist = torch.distributions.Categorical(probs)
action = action_dist.sample()
item() 和 detach().cpu().numpy()

在深度学习训练后,需要计算每个epoch得到的模型的训练效果的时候,一般会用到detach() item() cpu() numpy()等函数。

  • item():返回的是tensor中的值,且只能返回单个值(标量),不能返回向量,使用返回loss等,得到的值因为是标量所以肯定是在cpu上,因为cuda上只能放tensor
  • detach(): 阻断反向传播,返回值任然是tensor
  • cpu():将tensor放到cpu上,返回值任然是tensor
  • numpy():将tensor转换为numpy,注意cuda上面的变量类型只能是tensor,不能是其他

在pytorch中反向传播只能对计算出的loss进行,loss肯定是一个具体的值,使用detach是为了把拿出的计算图和主图分离,计算出的loss不再对主干进行修改:

python 复制代码
critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
critic_loss.backward()

如上的critic_loss.backward()只会修改critic的参数,并不会修改td_target的参数

相关推荐
元宇宙时间2 小时前
RWA加密金融高峰论坛&星链品牌全球发布 —— 稳定币与Web3的香港新篇章
人工智能·web3·区块链
MZ_ZXD0013 小时前
springboot汽车租赁服务管理系统-计算机毕业设计源码58196
java·c++·spring boot·python·django·flask·php
A 计算机毕业设计-小途3 小时前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
天涯海风5 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs6 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java6 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV7 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
念念01077 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
Black_Rock_br7 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
云天徽上8 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts