Pytorch Note

cat函数:

cat函数不会增加维度,默认按照dim=0连接张量

stack函数:

stack函数会增加一个维度

nn.Linear的默认输入:

torch中默认输入一定要为tensor,并且默认是tensor.float32,此外device如果没有model.to(device)放到gpu上面默认会在cpu上运行,如果把模型放到了device上面,那么输入的向量也要放到gpu上面

torch的eval模式和train模式:

使用model.eval模式,模型会进入评估模式,在这个时候,会丢弃以下行为:

  1. Dropout:在评估模式下,Dropout 层不会丢弃任何神经元,所有的神经元都会参与计算。

  2. Batch Normalization:在评估模式下,Batch Normalization 层会使用训练过程中累积的均值和方差来进行归一化,而不是使用当前批次的数据。

使用model.train模式,模型会进入训练模式,这时候模型会启用Dropout和Batch Normalization

torch.gather函数:
复制代码
torch.gather(input, dim, index) → Tensor

假设input的shape为(a*b*c),index的shape需要为(a*b,x),这时候指定dim=2,就会把dim=2这一维度的向量按照x的下标收集起来1

python 复制代码
import torch

# 创建一个形状为 (3, 4) 的输入张量
input = torch.tensor([[1, 2, 3, 4],
                      [5, 6, 7, 8],
                      [9, 10, 11, 12]])

# 创建一个形状为 (3, 2) 的索引张量
index = torch.tensor([[0, 1],
                      [1, 2],
                      [2, 3]])

# 沿着第 1 维(列)收集元素
output = torch.gather(input, dim=1, index=index)

print(output)

"""
tensor([[ 1,  2],
        [ 6,  7],
        [11, 12]])
"""
torch.distributions.Categorical函数:

torch.distributions.Categorical(probs=None, logits=None)

probs代表概率,要求加起来为1,logits代表对数概率,不一定要加起来为1,torch会自动计算让他们加起来为1,虽然用np.random.choice也能实现这个效果,但是numpy是不能进行梯度计算的

python 复制代码
action_dist = torch.distributions.Categorical(probs)
action = action_dist.sample()
item() 和 detach().cpu().numpy()

在深度学习训练后,需要计算每个epoch得到的模型的训练效果的时候,一般会用到detach() item() cpu() numpy()等函数。

  • item():返回的是tensor中的值,且只能返回单个值(标量),不能返回向量,使用返回loss等,得到的值因为是标量所以肯定是在cpu上,因为cuda上只能放tensor
  • detach(): 阻断反向传播,返回值任然是tensor
  • cpu():将tensor放到cpu上,返回值任然是tensor
  • numpy():将tensor转换为numpy,注意cuda上面的变量类型只能是tensor,不能是其他

在pytorch中反向传播只能对计算出的loss进行,loss肯定是一个具体的值,使用detach是为了把拿出的计算图和主图分离,计算出的loss不再对主干进行修改:

python 复制代码
critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
critic_loss.backward()

如上的critic_loss.backward()只会修改critic的参数,并不会修改td_target的参数

相关推荐
肖永威10 分钟前
macOS环境安装/卸载python实践笔记
笔记·python·macos
后端小肥肠25 分钟前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
TechWJ26 分钟前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
每日新鲜事31 分钟前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
枷锁—sha33 分钟前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
Coder_Boy_37 分钟前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
abluckyboy1 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
挖坑的张师傅1 小时前
对 AI Native 架构的一些思考
人工智能
喵手1 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
LinQingYanga1 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能