预训练模型通过 prompt(提示)生成的“软标签”是什么

预训练模型通过 prompt(提示)生成的"软标签"是指模型在处理输入数据时输出的概率分布,而不是明确的、唯一的硬标签。

什么是"软标签"?

  • 软标签 (Soft Label)通常指的是模型预测结果中输出的概率分布。例如,如果一个分类任务中有3个类别,模型的输出可能是:
    Soft Label = [0.7, 0.2, 0.1]
    这意味着模型认为输入数据属于类别1的概率是70%,类别2是20%,类别3是10%。这与硬标签 (Hard Label)不同,硬标签只会给出一个确定的类别,如 [1, 0, 0],即模型认为输入属于类别1,没有其他可能性。

为什么使用"软标签"?

软标签提供了更多的信息,它不仅告诉模型最可能的类别,还保留了模型对其他类别的判断信息(即不确定性)。这对以下情况非常有用:

  • 迁移学习:当预训练模型被用作下游任务时,利用软标签可以更好地保留预训练模型的知识,因为它可以将预训练模型的丰富输出信息(即对于不同类别的信心)传递到下游任务中。
  • 知识蒸馏:在知识蒸馏中,教师模型通常会生成软标签,学生模型则通过学习这些软标签来获得教师模型的知识,而不仅仅是依赖硬标签进行训练。

如何通过 Prompt 生成软标签?

Prompting 是预训练模型在处理特定任务时的一种技术,使用提示(prompts)来引导模型回答或生成输出。通过将下游任务中的数据与适当的提示结合,可以促使预训练模型生成软标签。这些提示可以是:

  • 自然语言提示:在语言模型中,通过自然语言问题或命令来引导模型生成答案。
  • 输入转换提示:在视觉或其他领域中,通过特定的输入格式或上下文调整,促使模型给出概率分布形式的输出。

总结

预训练模型通过 prompt 生成的软标签是模型输出的概率分布,而不是一个确定的分类结果。软标签包含了更多信息,能够更好地表示模型对不同类别的信心程度,通常用于迁移学习、知识蒸馏等任务中,以充分利用预训练模型的知识。

相关推荐
500佰7 分钟前
AI 财务案例 普通财务人的AI in ALL
前端·人工智能
桂花饼10 分钟前
GPT-5.1-Codex-Max:原生“记忆压缩”重塑编程范式,让 AI 连续写代码 24 小时不再是梦
人工智能·gpt·ai绘图·nano banana 2·图像生成api·openai兼容接口·gpt-5.1-codex
Mintopia11 分钟前
🌍 全球 AIGC 技术竞争格局下:Web 应用的技术自主可控思考
人工智能·aigc·trae
Mintopia16 分钟前
🏗️ 系统架构之:大模型 Token 计费方案
人工智能·架构·全栈
萤火虫的夏天25117 分钟前
虚拟环境安装tensorflow使用GPU加速,显卡:1650ti
人工智能·python·tensorflow
万俟淋曦18 分钟前
【论文速递】2025年第34周(Aug-17-23)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·ai·机器人·论文·具身智能
亚马逊云开发者19 分钟前
从误判到精准:游戏社区 AI 审核的工程化实践
人工智能
JeJe同学19 分钟前
Diffusion模型相比GAN优势与缺点?
人工智能·神经网络·生成对抗网络
橙序员小站25 分钟前
Java 接入Pinecone搭建知识库踩坑实记
java·开发语言·人工智能
Star abuse25 分钟前
XML转YOLO格式数据集教程
xml·人工智能·yolo