预训练模型通过 prompt(提示)生成的“软标签”是什么

预训练模型通过 prompt(提示)生成的"软标签"是指模型在处理输入数据时输出的概率分布,而不是明确的、唯一的硬标签。

什么是"软标签"?

  • 软标签 (Soft Label)通常指的是模型预测结果中输出的概率分布。例如,如果一个分类任务中有3个类别,模型的输出可能是:
    Soft Label = [0.7, 0.2, 0.1]
    这意味着模型认为输入数据属于类别1的概率是70%,类别2是20%,类别3是10%。这与硬标签 (Hard Label)不同,硬标签只会给出一个确定的类别,如 [1, 0, 0],即模型认为输入属于类别1,没有其他可能性。

为什么使用"软标签"?

软标签提供了更多的信息,它不仅告诉模型最可能的类别,还保留了模型对其他类别的判断信息(即不确定性)。这对以下情况非常有用:

  • 迁移学习:当预训练模型被用作下游任务时,利用软标签可以更好地保留预训练模型的知识,因为它可以将预训练模型的丰富输出信息(即对于不同类别的信心)传递到下游任务中。
  • 知识蒸馏:在知识蒸馏中,教师模型通常会生成软标签,学生模型则通过学习这些软标签来获得教师模型的知识,而不仅仅是依赖硬标签进行训练。

如何通过 Prompt 生成软标签?

Prompting 是预训练模型在处理特定任务时的一种技术,使用提示(prompts)来引导模型回答或生成输出。通过将下游任务中的数据与适当的提示结合,可以促使预训练模型生成软标签。这些提示可以是:

  • 自然语言提示:在语言模型中,通过自然语言问题或命令来引导模型生成答案。
  • 输入转换提示:在视觉或其他领域中,通过特定的输入格式或上下文调整,促使模型给出概率分布形式的输出。

总结

预训练模型通过 prompt 生成的软标签是模型输出的概率分布,而不是一个确定的分类结果。软标签包含了更多信息,能够更好地表示模型对不同类别的信心程度,通常用于迁移学习、知识蒸馏等任务中,以充分利用预训练模型的知识。

相关推荐
余生H1 小时前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
果冻人工智能1 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学1 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类