预训练模型通过 prompt(提示)生成的“软标签”是什么

预训练模型通过 prompt(提示)生成的"软标签"是指模型在处理输入数据时输出的概率分布,而不是明确的、唯一的硬标签。

什么是"软标签"?

  • 软标签 (Soft Label)通常指的是模型预测结果中输出的概率分布。例如,如果一个分类任务中有3个类别,模型的输出可能是:
    Soft Label = [0.7, 0.2, 0.1]
    这意味着模型认为输入数据属于类别1的概率是70%,类别2是20%,类别3是10%。这与硬标签 (Hard Label)不同,硬标签只会给出一个确定的类别,如 [1, 0, 0],即模型认为输入属于类别1,没有其他可能性。

为什么使用"软标签"?

软标签提供了更多的信息,它不仅告诉模型最可能的类别,还保留了模型对其他类别的判断信息(即不确定性)。这对以下情况非常有用:

  • 迁移学习:当预训练模型被用作下游任务时,利用软标签可以更好地保留预训练模型的知识,因为它可以将预训练模型的丰富输出信息(即对于不同类别的信心)传递到下游任务中。
  • 知识蒸馏:在知识蒸馏中,教师模型通常会生成软标签,学生模型则通过学习这些软标签来获得教师模型的知识,而不仅仅是依赖硬标签进行训练。

如何通过 Prompt 生成软标签?

Prompting 是预训练模型在处理特定任务时的一种技术,使用提示(prompts)来引导模型回答或生成输出。通过将下游任务中的数据与适当的提示结合,可以促使预训练模型生成软标签。这些提示可以是:

  • 自然语言提示:在语言模型中,通过自然语言问题或命令来引导模型生成答案。
  • 输入转换提示:在视觉或其他领域中,通过特定的输入格式或上下文调整,促使模型给出概率分布形式的输出。

总结

预训练模型通过 prompt 生成的软标签是模型输出的概率分布,而不是一个确定的分类结果。软标签包含了更多信息,能够更好地表示模型对不同类别的信心程度,通常用于迁移学习、知识蒸馏等任务中,以充分利用预训练模型的知识。

相关推荐
SmartBrain18 分钟前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t1 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华2 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu3 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师4 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成6 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)7 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑