预训练模型通过 prompt(提示)生成的“软标签”是什么

预训练模型通过 prompt(提示)生成的"软标签"是指模型在处理输入数据时输出的概率分布,而不是明确的、唯一的硬标签。

什么是"软标签"?

  • 软标签 (Soft Label)通常指的是模型预测结果中输出的概率分布。例如,如果一个分类任务中有3个类别,模型的输出可能是:
    Soft Label = [0.7, 0.2, 0.1]
    这意味着模型认为输入数据属于类别1的概率是70%,类别2是20%,类别3是10%。这与硬标签 (Hard Label)不同,硬标签只会给出一个确定的类别,如 [1, 0, 0],即模型认为输入属于类别1,没有其他可能性。

为什么使用"软标签"?

软标签提供了更多的信息,它不仅告诉模型最可能的类别,还保留了模型对其他类别的判断信息(即不确定性)。这对以下情况非常有用:

  • 迁移学习:当预训练模型被用作下游任务时,利用软标签可以更好地保留预训练模型的知识,因为它可以将预训练模型的丰富输出信息(即对于不同类别的信心)传递到下游任务中。
  • 知识蒸馏:在知识蒸馏中,教师模型通常会生成软标签,学生模型则通过学习这些软标签来获得教师模型的知识,而不仅仅是依赖硬标签进行训练。

如何通过 Prompt 生成软标签?

Prompting 是预训练模型在处理特定任务时的一种技术,使用提示(prompts)来引导模型回答或生成输出。通过将下游任务中的数据与适当的提示结合,可以促使预训练模型生成软标签。这些提示可以是:

  • 自然语言提示:在语言模型中,通过自然语言问题或命令来引导模型生成答案。
  • 输入转换提示:在视觉或其他领域中,通过特定的输入格式或上下文调整,促使模型给出概率分布形式的输出。

总结

预训练模型通过 prompt 生成的软标签是模型输出的概率分布,而不是一个确定的分类结果。软标签包含了更多信息,能够更好地表示模型对不同类别的信心程度,通常用于迁移学习、知识蒸馏等任务中,以充分利用预训练模型的知识。

相关推荐
nudt_qxx几秒前
CUDA编程模型与硬件执行层级对应关系
linux·人工智能·算法
组合缺一2 分钟前
赋予 AI Agent “无限续航”:语义保护型上下文压缩技术解析
人工智能·ai·llm·agent·solon·solon-ai
IRevers26 分钟前
【YOLO】YOLO-Master 腾讯轻量级YOLO架构超越YOLO-13(含检测和分割推理)
图像处理·人工智能·pytorch·python·yolo·transformer·边缘计算
AI浩30 分钟前
FRBNet:通过频域径向基网络重新审视低光视觉
人工智能
CelestialYuxin36 分钟前
TriGen NPU
人工智能·硬件架构
Elastic 中国社区官方博客1 小时前
Elasticsearch:创建 geocoding workflow,并在 agent 中使用它进行位置搜索
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型
上进小菜猪1 小时前
基于 YOLOv8 的多水果智能识别系统工程化实战 [目标检测完整源码]
深度学习
自由职业社1 小时前
硅基流动:强悍的生成式AI计算平台,普惠AGI!
人工智能·agi
老金带你玩AI2 小时前
16项测试赢了13项!Gemini 3.1 Pro碾压GPT-5.2和Claude
人工智能
是小蟹呀^2 小时前
低质量人脸识别的两条技术路线:FIE与CSM详解
人工智能