目录
1.堆排序的思想
堆排序是利用堆这种数据结构设计的排序算法,更准确的说,是利用堆的删除操作所设计的一种排序算法。
比如:删除堆顶元素的时候,我们使用的是替换法删除,也就是将堆顶元素和数组末尾的元素交换,每次选择的堆顶元素是堆中当前的最大or最小元素。相当于每次都能在待排序序列中选出一个最值,从后往前填入数组中的一个正确位置。
- 如果是大堆,每次选出的数据就是当前堆中最大的元素,从数组后面往前填入数组,排出来的数据是升序的。
- 如果是小堆,每次选出的数据就是当前堆中最小的元素,从数组后面往前填入数组,排出来的数据是降序的。
所以,如果我们想排升序 ,建堆的时候,应该建立大堆 ;如果我们想排降序 ,建堆的时候,应该建立小堆。
2.堆排序的实现
堆排序的实现主要分为两步:建堆 和选数。
建堆
堆排序是在堆这种数据结构的基础上进行的,所以想要进行堆排序必须先建堆。建堆方式分为两种,一种是向上调整建堆,一种是向下调整建堆。
向上调整建堆
向上调整 的前提 是当前调整的数据 前面的数据构成堆。所以,向上调整建堆的顺序应该从上往下、从左往右依次进行向上调整。一个数据通过向上调整建堆最多调整树的高度减1次 ,也就是logN,一共N个数据,所以向上调整建堆的时间复杂度是O(N*logN)。
向下调整建堆
向下调整 的前提 是左右子树都是堆,也就是当前数据后面的数据是堆。所以,向下调整建堆的顺序应该从右往左、从下往上依次进行。因为,叶子结点没有孩子,所以应该从倒数第一个非叶子结点开始进行向下调整。
向下调整建堆代码:
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
// 找出小的那个孩子
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
// 继续往下调整
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
向下调整建堆时间复杂度分析:
向下调整建堆的时间复杂度为O(N),要优于向上调整建堆,所以我们采用向下调整建堆。
选数
所谓选数,就是每次都选择堆顶元素,然后将堆顶元素和数组未排序空间的最后一个元素交换,每次选择的堆顶元素是堆中当前的最大or最小元素。相当于每次都能在待排序序列中选出一个最值,从后往前填入数组中的一个正确位置。
流程图如下所示:
堆排序实现代码
#include <stdio.h>
void swap(int* p1, int *p2)
{
int t = *p1;
*p1 = *p2;
*p2 = t;
}
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
// 找出小的那个孩子
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
// 继续往下调整
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 向下调整建堆
// O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
// O(N*logN)
int end = n - 1;
while (end > 0)
{
swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
int main()
{
int nums[] = {5,4,8,9,6,3,2,1,7,0};
HeapSort(nums,10);
int i = 0;
while(i < sizeof(nums) / sizeof(int))
{
printf("%d ",nums[i]);
i++;
}
return 0;
}
3.堆排序总结
- 时间复杂度:O(N*logN)。采用向下调整建堆,时间复杂度为O(N);逐元素进行向下调整,时间复杂度为log(N);所以总的时间复杂度为O(N*logN)。
- 空间复杂度:O(1)。并没有开辟额外的空间,时间复杂度为O(1)。
- 稳定性:不稳定,如图所示。