NVIDIA Jetson支持的神经网络加速的量化平台

NVIDIA Jetson支持的神经网络加速的量化工具、技术

NVIDIA Jetson 是专为边缘计算和嵌入式系统设计的高性能计算平台,它支持多种深度学习模型的部署和推理。对于神经网络加速的量化平台,Jetson 支持以下技术和工具:

  1. TensorRT:TensorRT 是 NVIDIA 提供的一个深度学习推理优化器和运行时库,它支持各种 GPU 加速器,包括 Jetson 系列。TensorRT 可以对深度学习模型进行优化,包括层融合、精度降低(如从 FP32 到 INT8)等,以提高推理速度和降低内存占用。TensorRT 支持量化感知训练(QAT)和训练后量化(PTQ),以实现模型的高效部署。

  2. jetson-inference:这是一个开源项目,为 NVIDIA Jetson 设备提供了深度学习推理和实时视觉的 DNN 库。它使用 TensorRT 在 GPU 上运行优化的网络,支持 C++ 和 Python 编程,并使用 PyTorch 进行模型训练。

  3. Deep Learning Accelerator (DLA):NVIDIA Jetson Orin 等平台包含第二代 DLA,这是一个专用的深度学习推理引擎,可以提供显著的 AI 算力。DLA 支持量化感知训练(QAT)和训练后量化(PTQ),以实现在 DLA 上的高效推理。

  4. cuDNN:CUDA 深度神经网络库(cuDNN)是 NVIDIA 提供的一个原语库,用于在 GPU 上加速深度神经网络。它支持多种深度学习框架,如 TensorFlow、Caffe、PyTorch 等,并且可以通过 cuDNN 进行模型的优化和加速。

  5. PyTorch Quantization:NVIDIA 还提供了 PyTorch 量化工具包,用于量化 PyTorch 模型。这个工具包支持量化感知训练和后训练量化,可以帮助开发者在 Jetson 平台上部署量化模型。

  6. PPQ:由商汤 HPC 团队开发的量化框架 PPQ,支持多个硬件后端平台的量化模拟与部署,并在此基础上抽象出一套完整的量化框架设计。

使用这些工具和平台,开发者可以在 Jetson 设备上进行神经网络的量化模拟、训练、优化和部署,以实现高效的深度学习推理。

多个硬件后端平台?

"多个硬件后端平台"指的是PPQ量化框架支持在多种不同的硬件和计算平台上进行量化模拟和部署。这些平台包括但不限于:

  1. GPU:如NVIDIA的TensorRT,支持在GPU上进行高效的推理加速。
  2. Vitis AI:Xilinx提供的用于FPGA的AI推理优化工具。
  3. DSP:数字信号处理器,常用于音频和通信领域的信号处理。
  4. NNIE:华为提供的Neural Network Inference Engine,用于其Ascend AI处理器。
  5. TVM:一个开源的机器学习编译器框架,可以跨多种硬件后端部署模型。
  6. OpenVINO:英特尔提供的跨架构的深度学习部署工具套件。
  7. Tengine:一个轻量级的推理引擎,支持多种硬件平台。
  8. SNPE:高通提供的用于其骁龙处理器的神经网络处理引擎。
  9. GraphCore:用于GraphCore智能处理单元(IPU)的推理引擎。
  10. Metax:用于MediaTek APU(AI处理器)的推理引擎。

PPQ通过支持这些不同的硬件后端平台,使得开发者可以在多种硬件上进行模型的量化和部署,从而实现跨平台的模型优化和推理加速。PPQ的这种灵活性和可扩展性,使其成为一个强大的工具,可以帮助开发者在不同的硬件平台上实现高效的AI模型部署。

相关推荐
落魄君子几秒前
SVM分类-支持向量机(Support Vector Machine)
神经网络·算法·支持向量机·分类
i查拉图斯特拉如是6 分钟前
基于MindSpore NLP的PEFT微调
人工智能·自然语言处理
mahuifa11 分钟前
QtCreator配置github copilot实现AI辅助编程
人工智能·ai编程·github copilot·qtcreator
千穹凌帝14 分钟前
基于深度学习多图像融合的屏幕缺陷检测方案
人工智能·深度学习·数码相机
张叔zhangshu2 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
云起无垠6 小时前
【论文速读】| FirmRCA:面向 ARM 嵌入式固件的后模糊测试分析,并实现高效的基于事件的故障定位
人工智能·自动化
Leweslyh8 小时前
物理信息神经网络(PINN)八课时教案
人工智能·深度学习·神经网络·物理信息神经网络
love you joyfully9 小时前
目标检测与R-CNN——pytorch与paddle实现目标检测与R-CNN
人工智能·pytorch·目标检测·cnn·paddle
该醒醒了~9 小时前
PaddlePaddle推理模型利用Paddle2ONNX转换成onnx模型
人工智能·paddlepaddle
小树苗1939 小时前
DePIN潜力项目Spheron解读:激活闲置硬件,赋能Web3与AI
人工智能·web3