理解dbt artifacts及其实际应用

dbt是数据分析领域的一种变革性工具,它使数据专业人员能够对仓库中的数据进行转换和建模。它的强大功能之一是生成dbt artifacts:dbt运行的结构化输出,提供对dbt项目及其操作的深入了解。

dbt 构件介绍

dbt构件是每次dbt运行时生成的JSON文件。它们包括:

  • semantic_manifest.json:包含为每个模型编译的SQL代码。
  • manifest.json:提供dbt项目上次运行的全面结果清单视图。
  • catalog.json:提供有关数据库模式的详细信息,包括列数据类型和描述。
  • run_results.json:包含上次dbt运行的结果,包括成功或失败状态。
  • sources.json:项目中使用的source数据表的详细信息。

这些构件对于文档、查看dbt项目状态以及可视化source的新鲜度都是必不可少的。

生成并访问构件

每次调用dbt时,它都会生成构件。例如,当你运行:

shell 复制代码
dbt run

DBT将在DBT项目的target/目录中生成构件。你可以直接访问这些JSON文件,并利用dbt的内置文档站点等工具可视化其内容。

dbt artifacts 包实际应用

brooklyn-data提供的dbt_artifacts是非常强大的工具,可以对dbt项目及其运行的元数据进行建模。目前该包支持下面几种数仓:

  • Databricks ✅
  • Spark ✅
  • Snowflake ✅
  • Google BigQuery ✅
  • Postgres ✅
  • SQL Server ✅

生成模型包括:

  • dim_dbt__current_models

  • dim_dbt__exposures

  • dim_dbt__models

  • dim_dbt__seeds

  • dim_dbt__snapshots

  • dim_dbt__sources

  • dim_dbt__tests

  • fct_dbt__invocations

  • fct_dbt__model_executions

  • fct_dbt__seed_executions

  • fct_dbt__snapshot_executions

  • fct_dbt__test_executions

  • 安装依赖

    packages:
    - package: brooklyn-data/dbt_artifacts
    version: 2.7.0

执行 dbt deps命令安装依赖。

  • 配置

dbt_project.yml中指定数据上传位置:

yaml 复制代码
models:
  dbt_artifacts:
    +database: your_destination_database
    +schema: your_destination_schema

我们还可以分类设置:

yml 复制代码
models:
  ...
  dbt_artifacts:
    +database: your_destination_database # optional, default is your target database
    +schema: your_destination_schema # optional, default is your target schema
    staging:
      +database: your_destination_database # optional, default is your target database
      +schema: your_destination_schema # optional, default is your target schema
    sources:
      +database: your_sources_database # optional, default is your target database
      +schema: your sources_database # optional, default is your target schema
  • 增加run-end hook
yml 复制代码
on-run-end:
  - "{{ dbt_artifacts.upload_results(results) }}"

建议增加条件,保证仅在生产环境启用:

yml 复制代码
on-run-end:
  - "{% if target.name == 'prod' %}{{ dbt_artifacts.upload_results(results) }}{% endif %}"
  • 运行

设置完成后,可以直接运行。

复制代码
dbt run --select dbt_artifacts

总结

DBT 构件是一项极为强大的特性,它能够让我们对 DBT 项目及运行请看有更深理解。如果我们能够有效地理解并利用这些构件,就可以对数据转换流程进行优化,从而确保数据的可靠性。期待您的真诚反馈,更多内容请阅读数据分析工程专栏。

相关推荐
liu****6 小时前
18.HTTP协议(一)
linux·网络·网络协议·http·udp·1024程序员节
洛_尘6 小时前
JAVA EE初阶 6: 网络编程套接字
网络·1024程序员节
2301_8002561118 小时前
关系数据库小测练习笔记(1)
1024程序员节
isNotNullX1 天前
怎么用数据仓库来进行数据治理?
大数据·数据库·数据仓库·数据治理
金融小师妹1 天前
基于多源政策信号解析与量化因子的“12月降息预期降温”重构及黄金敏感性分析
人工智能·深度学习·1024程序员节
GIS数据转换器1 天前
基于GIS的智慧旅游调度指挥平台
运维·人工智能·物联网·无人机·旅游·1024程序员节
南方的狮子先生2 天前
【C++】C++文件读写
java·开发语言·数据结构·c++·算法·1024程序员节
Neil今天也要学习2 天前
永磁同步电机无速度算法--基于三阶LESO的反电动势观测器
算法·1024程序员节
开开心心_Every2 天前
专业视频修复软件,简单操作效果好
学习·elasticsearch·pdf·excel·音视频·memcache·1024程序员节
liu****3 天前
16.udp_socket(三)
linux·开发语言·数据结构·c++·1024程序员节