图形处理 -- 直方图均衡化技术

直方图均衡化技术文档

背景

直方图均衡化是一种常用的图像增强技术,用于提升图像的对比度,使得图像的亮度分布更加均匀,从而改善视觉效果。这种技术尤其适用于亮度不均或对比度较低的图像,通过对像素值进行重新分配,使得图像中的细节更加清晰和显著。

数学步骤

1. 计算灰度级的直方图

假设图像是一个灰度图像,像素值范围为 [ 0 , L − 1 ] [0, L-1] [0,L−1],其中 L L L 是灰度级的总数(例如,8位图像中, L = 256 L = 256 L=256)。首先计算每个灰度值 r k r_k rk 的频率(也称为直方图),表示为 n k n_k nk,其中 k = 0 , 1 , 2 , ... , L − 1 k = 0, 1, 2, \dots, L-1 k=0,1,2,...,L−1。

公式如下:

p r ( r k ) = n k N p_r(r_k) = \frac{n_k}{N} pr(rk)=Nnk

其中, p r ( r k ) p_r(r_k) pr(rk) 表示灰度级 r k r_k rk 的概率, N N N 为图像中像素的总数。

2. 计算累积分布函数(CDF)

计算累积直方图或累积分布函数 c ( r k ) c(r_k) c(rk):

c ( r k ) = ∑ j = 0 k p r ( r j ) c(r_k) = \sum_{j=0}^{k} p_r(r_j) c(rk)=j=0∑kpr(rj)

c ( r k ) c(r_k) c(rk) 表示从灰度值 0 到 r k r_k rk 的累积概率。

3. 进行灰度值映射

将原始图像中每个像素值 r k r_k rk 映射到新的均衡化后的值 s k s_k sk:

s k = ( L − 1 ) ⋅ c ( r k ) s_k = (L - 1) \cdot c(r_k) sk=(L−1)⋅c(rk)

其中, s k s_k sk 是经过均衡化后的像素值,取值范围也是 [ 0 , L − 1 ] [0, L-1] [0,L−1]。

4. 应用映射到图像

将所有像素的原始值 r k r_k rk 通过映射函数替换为新的值 s k s_k sk,得到均衡化后的图像。

公式总结

直方图均衡化的转换函数为:

T ( r k ) = ( L − 1 ) ⋅ ∑ j = 0 k p r ( r j ) T(r_k) = (L - 1) \cdot \sum_{j=0}^{k} p_r(r_j) T(rk)=(L−1)⋅j=0∑kpr(rj)

通过 T ( r k ) T(r_k) T(rk) 的映射,可以得到均衡化后的灰度级。

直方图均衡化的直观理解

直方图均衡化通过重新分配像素值,使得较少出现的像素值占据更多的灰度范围,而频繁出现的像素值占据较小的灰度范围,从而达到增强图像对比度的效果。通过累积分布函数,原始图像的像素值被重新映射,使得在新图像中,像素的分布更加均匀,从而提高对比度,使图像的细节更加明显。

示例代码

以下是使用 Python 和 OpenCV 对图像进行直方图均衡化的代码示例:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取灰度图像
image = cv2.imread('example.jpg', 0)

# 使用OpenCV的直方图均衡化函数
equalized_image = cv2.equalizeHist(image)

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

小结

  • 直方图均衡化 的核心是重新分配像素值,使得图像亮度的分布更均匀。
  • 通过 累积分布函数(CDF),可以得到每个像素值的映射,从而增强图像对比度。
  • 这种技术在图像光照不均或对比度较低的情况下尤其有用,可以让图像中的细节变得更加明显。
相关推荐
张较瘦_13 分钟前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
whabc10028 分钟前
和鲸社区深度学习基础训练营2025年关卡3_Q1(1)
人工智能·深度学习
勤奋的知更鸟33 分钟前
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
人工智能·语言模型
金山几座40 分钟前
OpenCV探索之旅:形态学魔法
opencv·计算机视觉
presenttttt1 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(六 最终篇)
开发语言·python·opencv·计算机视觉
盼小辉丶1 小时前
Transoformer实战——Transformer模型性能评估
人工智能·深度学习·transformer
极限实验室1 小时前
Coco AI 实战(二):摄入MongoDB 数据
人工智能·mongodb
AIGC包拥它1 小时前
AI教学设计助手:生成好教案的Prompt技术实战(一)
人工智能·prompt
棱镜研途2 小时前
学习笔记丨卷积神经网络(CNN):原理剖析与多领域Github应用
图像处理·笔记·学习·计算机视觉·cnn·卷积神经网络·信号处理
SoFlu软件机器人2 小时前
Cursor、飞算JavaAI、GitHub Copilot、Gemini CLI 等热门 AI 开发工具合集
人工智能·github·copilot