图形处理 -- 直方图均衡化技术

直方图均衡化技术文档

背景

直方图均衡化是一种常用的图像增强技术,用于提升图像的对比度,使得图像的亮度分布更加均匀,从而改善视觉效果。这种技术尤其适用于亮度不均或对比度较低的图像,通过对像素值进行重新分配,使得图像中的细节更加清晰和显著。

数学步骤

1. 计算灰度级的直方图

假设图像是一个灰度图像,像素值范围为 [ 0 , L − 1 ] [0, L-1] [0,L−1],其中 L L L 是灰度级的总数(例如,8位图像中, L = 256 L = 256 L=256)。首先计算每个灰度值 r k r_k rk 的频率(也称为直方图),表示为 n k n_k nk,其中 k = 0 , 1 , 2 , ... , L − 1 k = 0, 1, 2, \dots, L-1 k=0,1,2,...,L−1。

公式如下:

p r ( r k ) = n k N p_r(r_k) = \frac{n_k}{N} pr(rk)=Nnk

其中, p r ( r k ) p_r(r_k) pr(rk) 表示灰度级 r k r_k rk 的概率, N N N 为图像中像素的总数。

2. 计算累积分布函数(CDF)

计算累积直方图或累积分布函数 c ( r k ) c(r_k) c(rk):

c ( r k ) = ∑ j = 0 k p r ( r j ) c(r_k) = \sum_{j=0}^{k} p_r(r_j) c(rk)=j=0∑kpr(rj)

c ( r k ) c(r_k) c(rk) 表示从灰度值 0 到 r k r_k rk 的累积概率。

3. 进行灰度值映射

将原始图像中每个像素值 r k r_k rk 映射到新的均衡化后的值 s k s_k sk:

s k = ( L − 1 ) ⋅ c ( r k ) s_k = (L - 1) \cdot c(r_k) sk=(L−1)⋅c(rk)

其中, s k s_k sk 是经过均衡化后的像素值,取值范围也是 [ 0 , L − 1 ] [0, L-1] [0,L−1]。

4. 应用映射到图像

将所有像素的原始值 r k r_k rk 通过映射函数替换为新的值 s k s_k sk,得到均衡化后的图像。

公式总结

直方图均衡化的转换函数为:

T ( r k ) = ( L − 1 ) ⋅ ∑ j = 0 k p r ( r j ) T(r_k) = (L - 1) \cdot \sum_{j=0}^{k} p_r(r_j) T(rk)=(L−1)⋅j=0∑kpr(rj)

通过 T ( r k ) T(r_k) T(rk) 的映射,可以得到均衡化后的灰度级。

直方图均衡化的直观理解

直方图均衡化通过重新分配像素值,使得较少出现的像素值占据更多的灰度范围,而频繁出现的像素值占据较小的灰度范围,从而达到增强图像对比度的效果。通过累积分布函数,原始图像的像素值被重新映射,使得在新图像中,像素的分布更加均匀,从而提高对比度,使图像的细节更加明显。

示例代码

以下是使用 Python 和 OpenCV 对图像进行直方图均衡化的代码示例:

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取灰度图像
image = cv2.imread('example.jpg', 0)

# 使用OpenCV的直方图均衡化函数
equalized_image = cv2.equalizeHist(image)

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

小结

  • 直方图均衡化 的核心是重新分配像素值,使得图像亮度的分布更均匀。
  • 通过 累积分布函数(CDF),可以得到每个像素值的映射,从而增强图像对比度。
  • 这种技术在图像光照不均或对比度较低的情况下尤其有用,可以让图像中的细节变得更加明显。
相关推荐
好奇龙猫13 分钟前
人工智能学习-AI-MIT公开课-第三节:推理:目标树与基于规则的专家系统-笔记
人工智能·笔记·学习
正经人_x14 分钟前
学习日记28:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
人工智能·深度学习·cnn
好奇龙猫15 分钟前
【AI学习-comfyUI学习-第二十节-controlnet线稿+softedge线稿处理器工作流艺术线处理器工作流-各个部分学习】
人工智能·学习
陈橘又青21 分钟前
vLLM-Ascend推理部署与性能调优深度实战指南:架构解析、环境搭建与核心配置
人工智能·后端·ai·架构·restful·数据·vllm
世优科技虚拟人22 分钟前
AI数字人企业产品图谱解析:2D/3D数字人AI交互开发技术指南
人工智能·大模型·人机交互·数字人·智能交互
LiFileHub26 分钟前
2025 AI驱动产业转型全景手册:从技术破局到价值重生(附8大转型案例)
人工智能
python机器学习ML30 分钟前
论文复现-以动物图像分类为例进行多模型性能对比分析
人工智能·python·神经网络·机器学习·计算机视觉·scikit-learn·sklearn
YANQ66231 分钟前
14.1 人脸的三维重构(PRNet算法)
人工智能·重构
风途知识百科34 分钟前
并网/分布式光伏气象站
人工智能·分布式
诸葛务农41 分钟前
神经网络信息编码技术:与人脑信息处理的差距及超越的替在优势和可能(下)
人工智能·神经网络