Allegro:强大的文本到视频模型

Allegro是一款先进的文本到视频生成模型,能够从简单的文本输入生成高质量的视频。这些视频长达6秒,以每秒15帧(FPS)的速度和720p的分辨率呈现,为视频内容创作带来了新的可能性。

Allegro模型信息

  • 模型名称:Allegro
  • 描述:文本到视频生成模型
  • 下载:可在Hugging Face上找到
  • 参数
    • VAE:175M
    • DiT:2.8B
  • 推理精度
    • VAE:FP32/TF32/BF16/FP16(推荐使用FP32/TF32)
    • DiT/T5:BF16/FP32/TF32
  • 上下文长度:79.2K
  • 分辨率:720 x 1280
  • 帧数:88
  • 视频长度:6秒 @ 15 FPS
  • 单GPU内存使用量:9.3G BF16(启用cpu_offload时)

快速开始

要开始使用Allegro,你需要按照以下步骤操作:

  1. 下载Allegro GitHub代码
  2. 安装必要的依赖
  3. 确保Python版本大于等于3.10,PyTorch版本大于等于2.4,CUDA版本大于等于12.4。具体详情可查看requirements.txt文件。
  4. 推荐使用Anaconda创建新环境(Python >= 3.10)来运行以下示例。
  5. 下载Allegro模型权重
  6. 运行推理

以下是运行推理的示例命令:

bash

复制代码
python single_inference.py \
--user_prompt 'A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this location might be a popular spot for docking fishing boats.' \
--save_path ./output_videos/test_video.mp4 \
--vae your/path/to/vae \
--dit your/path/to/transformer \
--text_encoder your/path/to/text_encoder \
--tokenizer your/path/to/tokenizer \
--guidance_scale 7.5 \
--num_sampling_steps 100 \
--seed 42

使用--enable_cpu_offload可以将模型卸载到CPU以减少GPU内存使用(约9.3G,如果不启用CPU卸载则为27.5G),但推理时间将显著增加。

(可选)将视频插值到30 FPS。

推荐使用EMA-VFI将视频从15 FPS插值到30 FPS。

为了更好的视觉质量,请使用imageio保存视频。

限制

该模型无法渲染名人、可读文本、特定地点、街道或建筑物。

未来计划

  • 多GPU推理和进一步加速(PAB)
  • 文本&图像到视频(TI2V)视频生成
  • 动作控制视频生成
  • 视觉质量增强

结语

Allegro为视频内容创作带来了新的便利性和效率。如果你对这个模型感兴趣,可以访问其Hugging Face页面、博客、论文或加入等待名单来了解更多信息,并尝试在Discord上使用它。

相关推荐
1892280486125 分钟前
NW728NW733美光固态闪存NW745NW746
大数据·服务器·网络·人工智能·性能优化
大模型最新论文速读1 小时前
模拟注意力:少量参数放大 Attention 表征能力
人工智能·深度学习·机器学习·语言模型·自然语言处理
lishaoan771 小时前
用TensorFlow进行逻辑回归(二)
人工智能·tensorflow·逻辑回归
慌ZHANG2 小时前
智慧气象新范式:人工智能如何重构城市级气象服务生态?
人工智能
Eumenidus2 小时前
使用ESM3蛋白质语言模型进行快速大规模结构预测
人工智能·语言模型·自然语言处理
熊猫钓鱼>_>2 小时前
FastGPT革命:下一代语言模型的极速进化
人工智能·语言模型·自然语言处理
吕永强2 小时前
电网的智能觉醒——人工智能重构能源生态的技术革命与公平悖论
人工智能·科普
极限实验室2 小时前
喜报 - 极限科技荣获 2025 上海开源创新菁英荟「开源创新新星企业」奖
人工智能·开源
在美的苦命程序员2 小时前
芯片之后,AI之争的下一个战场是能源?
人工智能
霖002 小时前
FPGA通信设计十问
运维·人工智能·经验分享·vscode·fpga开发·编辑器