Allegro:强大的文本到视频模型

Allegro是一款先进的文本到视频生成模型,能够从简单的文本输入生成高质量的视频。这些视频长达6秒,以每秒15帧(FPS)的速度和720p的分辨率呈现,为视频内容创作带来了新的可能性。

Allegro模型信息

  • 模型名称:Allegro
  • 描述:文本到视频生成模型
  • 下载:可在Hugging Face上找到
  • 参数
    • VAE:175M
    • DiT:2.8B
  • 推理精度
    • VAE:FP32/TF32/BF16/FP16(推荐使用FP32/TF32)
    • DiT/T5:BF16/FP32/TF32
  • 上下文长度:79.2K
  • 分辨率:720 x 1280
  • 帧数:88
  • 视频长度:6秒 @ 15 FPS
  • 单GPU内存使用量:9.3G BF16(启用cpu_offload时)

快速开始

要开始使用Allegro,你需要按照以下步骤操作:

  1. 下载Allegro GitHub代码
  2. 安装必要的依赖
  3. 确保Python版本大于等于3.10,PyTorch版本大于等于2.4,CUDA版本大于等于12.4。具体详情可查看requirements.txt文件。
  4. 推荐使用Anaconda创建新环境(Python >= 3.10)来运行以下示例。
  5. 下载Allegro模型权重
  6. 运行推理

以下是运行推理的示例命令:

bash

复制代码
python single_inference.py \
--user_prompt 'A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this location might be a popular spot for docking fishing boats.' \
--save_path ./output_videos/test_video.mp4 \
--vae your/path/to/vae \
--dit your/path/to/transformer \
--text_encoder your/path/to/text_encoder \
--tokenizer your/path/to/tokenizer \
--guidance_scale 7.5 \
--num_sampling_steps 100 \
--seed 42

使用--enable_cpu_offload可以将模型卸载到CPU以减少GPU内存使用(约9.3G,如果不启用CPU卸载则为27.5G),但推理时间将显著增加。

(可选)将视频插值到30 FPS。

推荐使用EMA-VFI将视频从15 FPS插值到30 FPS。

为了更好的视觉质量,请使用imageio保存视频。

限制

该模型无法渲染名人、可读文本、特定地点、街道或建筑物。

未来计划

  • 多GPU推理和进一步加速(PAB)
  • 文本&图像到视频(TI2V)视频生成
  • 动作控制视频生成
  • 视觉质量增强

结语

Allegro为视频内容创作带来了新的便利性和效率。如果你对这个模型感兴趣,可以访问其Hugging Face页面、博客、论文或加入等待名单来了解更多信息,并尝试在Discord上使用它。

相关推荐
%KT%17 分钟前
简单聊聊多模态大语言模型MLLM
人工智能·语言模型·自然语言处理
唐某人丶25 分钟前
教你如何用 JS 实现一个 Agent 系统(1)—— 认识 Agentic System
前端·人工智能
泡泡茶壶_ovo32 分钟前
RORPCAP: retrieval-based objects and relations prompt for image captioning
人工智能·深度学习·计算机视觉·语言模型·prompt·多模态·imagecaptioning
MaxCode-137 分钟前
单智能体篇:Prompt工程艺术
大数据·人工智能·prompt
小鹿的工作手帐1 小时前
有鹿机器人:智慧清洁新时代的引领者
人工智能·科技·机器人
这张生成的图像能检测吗1 小时前
(论文速读)Logits DeConfusion-CLIP少样本学习
人工智能·计算机视觉·图像分类·clip
居然JuRan2 小时前
RAG系统开发中的12大痛点及应对策略
人工智能
sinat_286945192 小时前
AI服务器介绍
服务器·人工智能·算法·chatgpt·transformer
Kusunoki_D2 小时前
PyTorch 环境配置
人工智能·pytorch·python
melonbo2 小时前
视频清晰度:静态码率比动态码率更优秀吗?
音视频