一块显卡理解一部完整电影!智源联合多所高校推出小时级的超长视频理解大模型Video-XL

长视频理解是多模态大模型的核心能力之一,也是迈向通用人工智能(AGI)的关键一步。然而,现有的多模态大模型在处理10分钟以上的超长视频时,仍然面临性能差和效率低的双重挑战。对此,智源研究院联合上海交通大学、中国人民大学、北京大学和北京邮电大学等多所高校,推出了小时级的超长视频理解大模型Video-XL。

Video-XL借助语言模型(LLM)的原生能力对长视觉序列进行压缩,不仅保留了短视频理解的能力,而且在长视频理解上展现了出色的泛化能力。Video-XL相较于同等参数规模的模型,在多个主流长视频理解基准评测的多项任务中排名第一 。此外,Video-XL在效率与性能之间实现了良好的平衡,仅需一块80G显存的显卡即可处理2048帧输入(对小时级长度视频采样),并在视频"海中捞针"任务中取得了接近95%的准确率

未来,Video-XL有望在电影摘要、视频异常检测、广告植入检测等应用场景中展现出广泛的应用价值,成为得力的长视频理解助手。

论文标题:Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding

论文链接:arxiv.org/abs/2409.14...

模型链接:huggingface.co/sy1998/Vide...

项目链接:github.com/VectorSpace...

图一 不同长视频模型在单块80G显卡上支持的最大帧数及在Video-MME上的表现

背景介绍

使用MLLM进行长视频理解具有极大的研究和应用前景。然而,当前的视频理解模型往往只能处理较短的视频,无法处理十分钟以上的视频。尽管最近研究社区出现了一些长视频理解模型,但这些工作主要存在以下问题:

压缩视觉token带来的信息损失: 为了使语言模型的固定窗口长度适应长视频带来的大量视觉token,众多方法尝试设计机制对视觉token进行压缩,例如LLaMA-VID主要降低token的数量,而MovieChat, MALMM则设计memory模块对帧信息进行压缩。然而,压缩视觉信息不可避免带来信息的损失和性能降低。

性能和效率的不平衡:相关工作LongVA尝试finetune语言模型扩大其上下文窗口,并成功将短视频理解能力泛化到了长视频上。LongVila优化了长视频训练的开销,提出了高效训练长视频训练的范式。然而,这些工作并未考虑推理时视频帧数增加带来的计算开销。

方法介绍

1、模型结构

图二 Video-XL模型结构图

如图二所示,Video-XL的整体模型结构和主流的MLLMs结构相似,由视觉编码器(CLIP), 视觉-语言映射器(2-layer MLP)以及语言模型(Qwen-7B)构成。特别之处在于,为了处理各种格式的多模态数据(单图,多图和视频),Video-XL建立了一个统一的视觉编码机制。针对多图和视频数据,将每帧分别输入CLIP;针对单图,将其划分为多个图像块,并将图像块输入CLIP进行编码。因此,一个N帧的视频或者一个N图像块的图片都将统一标记成 N × M 视觉tokens。

2、视觉上下文隐空间压缩

相比于以往长视频模型直接对视觉token压缩,Video-XL尝试利用语言模型对上下文的建模能力对长视觉序列进行无损压缩。对于视觉语言连接器输出的视觉信号序列

其中n为视觉token的数量。Video-XL的目标在于将X压缩成更为紧凑的视觉表示C (|C| < |X|)。在下文中将详细介绍视觉上下文隐空间压缩的原理。

受到Activation Beacon的启发,Video-XL引入了一种新的特殊标记,称为视觉摘要标记(VST),记为。基于此可以将视觉信号的隐层特征压缩到VST在LLM中的激活表示中(每层的Key和Value值)。具体而言,首先将视觉信号序列X分成大小为w的窗口(默认每个窗口长度为1440):

接着,对每个窗口首先确定压缩比,并插入一组VST标记,以交替的方式在视觉标记序列中插入。在该过程中,视觉token表示的变化可以由以下公式表达:

LLM将逐个处理每个窗口进行编码,并使用额外的投影矩阵在每层自注意力模块中处理VST的隐藏值。编码完成后,普通视觉标记的激活值被丢弃,而VST的激活值被保留并累积,作为处理后续窗口时的视觉信号代理。

3、模型训练方式

Video-XL通过优化在压缩视觉信号下的生成质量来进行训练。下一个Token的预测通过以下公式进行计算:

其中 Θ 代表模型所有优化的参数,包含语言模型,视觉编码器、视觉语言连接器、VST的投影矩阵,以及VST的token embedding。模型通过最小化标准的自回归损失进行训练,训练过程中不计算VST标记的损失(其标签设为-100),因为它们仅用于压缩。同时,为了灵活支持不同的压缩粒度,训练时每个窗口的压缩比会从{2,4,8,12,16}中随机抽取。在推理时,可以根据具体的效率需求选择一个压缩比并应用于所有窗口。

4、模型训练数据

在预训练阶段,Video-XL使用Laion-2M数据集优化视觉语言连接器。在微调阶段,Video-XL充分利用了MLLM在各种多模态数据集上的能力。对于单图像数据,使用了Bunny 695k和Sharegpt-4o的57k张图片。对于多图像数据,使用了从MMDU提取的5k个数据。对于视频数据,收集了不同时长的视频样本,包括来自NExT-QA的32k样本,Sharegpt-4o的2k视频样本,CinePile的10k样本以及11k个带有GPT-4V视频字幕注释的私有数据。

为了增强长视频理解能力并释放视觉压缩机制的潜力,本工作开发了一个自动化的长视频数据生产流程,并创建了一个高质量数据集------视觉线索顺序数据(VICO)。该流程首先从CinePile数据或YouTube等视频平台获取长视频,涵盖电影、纪录片、游戏、体育等开放领域的内容。每个长视频被分割成14秒的片段。对于每个片段,本工作使用VILA-1.5 40B模型生成详细描述。这些描述包括动作序列和关键事件,基于这些字幕,本工作利用ChatGPT将线索按时间顺序排列。VICO数据集通过要求模型检索关键帧并检测时间变化,提升其长视频理解能力。

实验

1、评测基准

Video-XL选用多个主流视频理解评测基准,对于长视频理解任务,评测了VNBench, LongVideoBench, MLVU和Video-MME; 对于短视频理解任务,评测了MVBench和Next-QA。

2、评测结果

长视频理解:

表一 Video-XL在MLVU和VideoMME的性能

表二 Video-XL在VNBench和LongVideoBench上的性能

如表一,表二所示Video-XL在多个主流的长视频评测基准上展现了卓越性能。其中在VNBench上准确率超过了目前最好的长视频模型大约10%。在MLVU的验证集上,仅仅具有7B参数的Video-XL甚至在单项选择任务上超越了GPT-4o模型。而在Video-MME和LongVideoBench等数据集上,Video-XL也在同等量级规模的长视频理解模型中排名第一。

超长视频理解:

Video-XL通过进行了视频"大海捞针"测试来评估其处理超长上下文的能力。LLaVA-NexT-Video和LongLLaVA都采用了简单的位置信息外推算法,但在输入更多上下文时,仍然难以理解关键信息。虽然LongVA通过微调LLM来处理更长的输入,但高昂的计算成本限制了其在单块80G GPU上处理约400帧的能力。相比之下,Video-XL在相同硬件条件下,以16倍压缩比和2048帧输入,达到了近95%的准确率。这表明,Video-XL在准确性和计算效率之间实现了最佳平衡。

短视频理解:

尽管Video-XL的设计主要面向长视频,但它保留了短视频理解的能力。在MVBench和Next-QA任务评测中,Video-XL取得了和目前SOTA模型相当的效果。

3、消融实验

表三 Video-XL的消融实验

Video-XL对所提出的视觉压缩机制和VICO数据集进行了消融实验,如表三所示

1.视觉压缩的有效性: Video-XL使用Bunny 695k数据集训练了两个模型:一个不使用压缩,另一个使用随机压缩比(从{2, 8, 16}中选取)。对于压缩模型,在视频基准MLVU和图像基准MME、MMBench上测试时应用了不同的压缩比。值得注意的是,即使使用16的压缩比,压缩模型在仍表现出较好的效果,接近甚至超越了基线模型。

2.VICO数据集的有效性:Video-XL使用不同数据集训练了四个模型:(a) 仅使用Bunny 695k;(b) Bunny 695k结合NeXTQA 32k;(c) Bunny 695k结合CinePile 10k;(d) Bunny 695k结合长视频字幕5k;(e) Bunny 695k结合VICO 5k。值得注意的是,即使仅使用5k的VICO数据,Video-XL也超过了使用NeXTQA 32k训练的模型。此外,主要事件/动作排序任务比字幕生成任务带来了更显著的提升,因为它促使模型从长序列中提取关键片段并进行理解。****

可视化结果

图三 Video-XL 在长视频理解任务上的可视化结果

如图三所示,Video-XL 在电影摘要、视频异常检测、广告植入检测等长视频任务上展现了良好的性能。

总结

该工作提出了Video-XL模型,利用语言模型的压缩能力,仅需一块80G显卡即可理解小时级别的视频;除此之外,Video-XL在多个主流长视频理解基准评测上表现优异。Video-XL有望在多个长视频理解的应用场景中展现出广泛的应用价值,成为得力的长视频理解助手。目前。Video-XL的模型代码均已开源,以促进全球多模态视频理解研究社区的合作和技术共享。

相关推荐
艾思科蓝 AiScholar29 分钟前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink1 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave1 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商1 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼1 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
周杰伦_Jay2 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing2 小时前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws
编码浪子2 小时前
Transformer的编码机制
人工智能·深度学习·transformer
IE062 小时前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器2 小时前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市