多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
MasterLi80232 小时前
我的读书清单
android·linux·学习
hssfscv2 小时前
JAVA学习笔记——集合的概念和习题
笔记·学习
ha20428941942 小时前
Linux操作系统学习之---初识网络
linux·网络·学习
AAA小肥杨3 小时前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
1***Q7844 小时前
PyTorch图像分割实战,U-Net模型训练与部署
人工智能·pytorch·python
AI即插即用5 小时前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
BullSmall5 小时前
《道德经》第五十八章
学习
Keep_Trying_Go5 小时前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
三品吉他手会点灯5 小时前
STM32F103学习笔记-16-RCC(第4节)-使用 HSI 配置系统时钟并用 MCO 监控系统时钟
笔记·stm32·单片机·嵌入式硬件·学习
gzu_015 小时前
基于昇腾 配置pytorch环境
人工智能·pytorch·python