多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
呱呱巨基7 小时前
Linux 进程概念
linux·c++·笔记·学习
yong15858553438 小时前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习
IDIOT___IDIOT9 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
Rousson9 小时前
硬件学习笔记--91 TMR型互感器介绍
笔记·学习
前端 贾公子10 小时前
Vue响应式原理学习:基本原理
javascript·vue.js·学习
Slaughter信仰10 小时前
图解大模型_生成式AI原理与实战学习笔记前四张问答(7题)
人工智能·笔记·学习
2401_8345170711 小时前
AD学习笔记-26 Active Routing
笔记·学习
QiZhang | UESTC12 小时前
学习日记day45
学习
菜鸟‍12 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
知识分享小能手12 小时前
CentOS Stream 9入门学习教程,从入门到精通,CentOS Stream 9 配置网络功能 —语法详解与实战案例(10)
网络·学习·centos