多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
DKPT3 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
好好研究5 小时前
学习栈和队列的插入和删除操作
数据结构·学习
新中地GIS开发老师6 小时前
新发布:26考研院校和专业大纲
学习·考研·arcgis·大学生·遥感·gis开发·地理信息科学
SH11HF7 小时前
小菜狗的云计算之旅,学习了解rsync+sersync实现数据实时同步(详细操作步骤)
学习·云计算
Frank学习路上7 小时前
【IOS】XCode创建firstapp并运行(成为IOS开发者)
开发语言·学习·ios·cocoa·xcode
Chef_Chen9 小时前
从0开始学习计算机视觉--Day07--神经网络
神经网络·学习·计算机视觉
X_StarX10 小时前
【Unity笔记02】订阅事件-自动开门
笔记·学习·unity·游戏引擎·游戏开发·大学生
MingYue_SSS11 小时前
开关电源抄板学习
经验分享·笔记·嵌入式硬件·学习
weixin_4373982111 小时前
转Go学习笔记(2)进阶
服务器·笔记·后端·学习·架构·golang
慕y27411 小时前
Java学习第十六部分——JUnit框架
java·开发语言·学习