多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
Ziky学习记录1 小时前
从零到实战:React Router 学习与总结
前端·学习·react.js
sensen_kiss1 小时前
INT303 Coursework1 爬取影视网站数据(如何爬虫网站数据)
爬虫·python·学习
Rorsion2 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
red_redemption2 小时前
自由学习记录(116)
学习
r i c k3 小时前
数据库系统学习笔记
数据库·笔记·学习
野犬寒鸦4 小时前
从零起步学习JVM || 第一章:类加载器与双亲委派机制模型详解
java·jvm·数据库·后端·学习
浅念-4 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
ZH15455891315 小时前
Flutter for OpenHarmony Python学习助手实战:API接口开发的实现
python·学习·flutter
爱吃生蚝的于勒5 小时前
【Linux】进程信号之捕捉(三)
linux·运维·服务器·c语言·数据结构·c++·学习
奶茶精Gaaa5 小时前
工具分享--F12使用技巧
学习