多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
hhcccchh1 分钟前
学习vue第八天 Vue3 模板语法和内置指令 - 简单入门
前端·vue.js·学习
浩瀚地学15 分钟前
【Java】异常
java·开发语言·经验分享·笔记·学习
Nan_Shu_6141 小时前
学习: Threejs (3)& Threejs (4)
学习
koo3641 小时前
pytorch深度学习笔记9
pytorch·笔记·深度学习
IT=>小脑虎2 小时前
2026版 Python零基础小白学习知识点【基础版详解】
开发语言·python·学习
李泽辉_3 小时前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法
星火开发设计3 小时前
C++ set 全面解析与实战指南
开发语言·c++·学习·青少年编程·编程·set·知识
坚持就完事了3 小时前
Linux的学习03:时间没有更新怎么解决
学习
李泽辉_3 小时前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
im_AMBER4 小时前
Leetcode 99 删除排序链表中的重复元素 | 合并两个链表
数据结构·笔记·学习·算法·leetcode·链表