多层感知机从零开始实现

1.加载并准备 Fashion-MNIST 数据集

复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现具有单隐藏层的多层感知机,包含256个隐藏单元

复制代码
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

3.实现ReLU激活函数

复制代码
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

4.使用reshape将每个二维图像转换为长度为num_inputs的向量

复制代码
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)
    return (H@W2 + b2)

loss = nn.CrossEntropyLoss(reduction='none')

5.隐藏层包含256个隐藏单元,并使用了ReLU激活函数

复制代码
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
相关推荐
Broken Arrows2 小时前
Linux学习——管理网络安全(二十一)
linux·学习·web安全
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
雁于飞3 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
rannn_1113 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
~-~%%4 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_4 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
wanzhong23335 小时前
ArcGIS学习-20 实战-地形研究
学习
wanzhong23335 小时前
ArcGIS学习-20 实战-县域水文分析
学习·arcgis
小马学嵌入式~5 小时前
嵌入式 SQLite 数据库开发笔记
linux·c语言·数据库·笔记·sql·学习·sqlite