二百七十三、Kettle——ClickHouse中增量导入数据准确性统计表数据(1天1次)

一、目的

在数据质量模块,需要对原始数据的准确性进行统计

二、Hive中原有代码

2.1 表结构

复制代码
--42、数据准确性统计表 dwd_data_accuracy
create  table  if not exists  hurys_db.dwd_data_accuracy(
    data_type               int        comment '1:转向比,2:统计,3:评价,4:区域,5:过车,6:静态排队,7:动态排队,8:轨迹,9:事件数据,10:事件资源',
    device_no               string     comment '设备编号',
    field_name              string     comment '字段名',
    data_unreasonable_rate  float      comment '数据不合理率',
    data_null_rate          float      comment '数据空值率'
)
comment '数据准确性统计表'
partitioned by (day string)
stored as orc
;

2.2 SQL代码

复制代码
insert  overwrite  table  hurys_db.dwd_data_accuracy  partition(day)
select
       t1.data_type,
       t1.device_no,
       t1.field_name,
       round((sum(case when t1.field_value is not null then 1 else 0 end)/t2.count_device_all),2)  data_unreasonable_rate,
       round((sum(case when t1.field_value is null then 1 else 0 end)/t2.count_device_all),2) data_null_rate ,
       t1.day
from hurys_db.dwd_data_clean_record_queue as t1
left join (select
                device_no,
                day,
                count(device_no) count_device_all
           from hurys_db.ods_queue
           where day='2024-09-04'
           group by device_no, day
          ) as  t2
on t2.device_no=t1.device_no and t2.day=t1.day
where t2.count_device_all is not null
group by t1.data_type, t1.device_no, t1.field_name, t2.count_device_all, t1.day

三、ClickHouse中现有代码

3.1 表结构

复制代码
--42、八大类基础数据准确性统计表(长期存储)
create  table  if not exists  hurys_jw.dwd_data_accuracy(
    data_type               Int32            comment '1:转向比,2:统计,3:评价,4:区域,5:过车,6:静态排队,7:动态排队,8:轨迹,9:事件数据,10:事件资源',
    device_no               String           comment '设备编号',
    field_name              String           comment '字段名',
    data_unreasonable_rate  Decimal(10, 6)   comment '数据不合理率',
    data_null_rate          Decimal(10, 6)   comment '数据空值率',
    day                     Date             comment '日期'
)
ENGINE = MergeTree
PARTITION BY day
PRIMARY KEY day
ORDER BY day
SETTINGS index_granularity = 8192;

3.2 SQL代码

复制代码
--静态排队
select
       data_type,
       device_no,
       field_name,
       round(count_field_unreasonable / count_device_all,6) data_unreasonable_rate,
       round(count_field_null / count_device_all,6) data_null_rate,
       cast(day as String) day
from (select
       t1.data_type,
       t1.device_no,
       t1.field_name,
       sum(case when field_name is not null  then 1 else 0 end) count_field_unreasonable,
       sum(case when field_name is null  then 1 else 0 end) count_field_null,
       t2.count_device_all,
       t1.day
from hurys_jw.dwd_data_clean_record_queue as t1
left join (select
                device_no,
                DATE(create_time) day,
                count(device_no) count_device_all
           from hurys_jw.ods_queue
           where day='2024-10-22'
           group by device_no, day
          ) as  t2
on t2.device_no=t1.device_no and t2.day=t1.day
where t2.count_device_all > 0
group by t1.data_type, t1.device_no, t1.field_name, t2.count_device_all, t1.day)
;

3.3 Kettle任务

3.3.1 newtime

3.3.2 替换NULL值

3.3.3 静态排队

select

data_type,

device_no,

field_name,

round(count_field_unreasonable / count_device_all,6) data_unreasonable_rate,

round(count_field_null / count_device_all,6) data_null_rate,

cast(day as String) day

from (select

t1.data_type,

t1.device_no,

t1.field_name,

sum(case when field_name is not null then 1 else 0 end) count_field_unreasonable,

sum(case when field_name is null then 1 else 0 end) count_field_null,

t2.count_device_all,

t1.day

from hurys_jw.dwd_data_clean_record_queue as t1

left join (select

device_no,

DATE(create_time) day,

count(device_no) count_device_all

from hurys_jw.ods_queue

where day > ?

group by device_no, day

) as t2

on t2.device_no=t1.device_no and t2.day=t1.day

where t2.count_device_all > 0

group by t1.data_type, t1.device_no, t1.field_name, t2.count_device_all, t1.day)

;

其他clickhouse输入控件代码类似

3.3.4 字段选择

3.3.5 clickhouse输出

3.3.6 执行任务

3.3.7 海豚调度(1天1次)

搞定!就是Hive中原有SQL语句和ClickHouse现有SQL语句很大不同,改造起来有点烦,尤其碰上管卡!

相关推荐
zhangjin12222 天前
kettle插件-kettle数据挖掘ARFF插件
大数据·人工智能·数据挖掘·kettle·kettle教程·kettle数据挖掘插件
小牛头#16 天前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
全干engineer16 天前
ClickHouse 入门详解:它到底是什么、优缺点、和主流数据库对比、适合哪些场景?
数据库·clickhouse
爱吃萝卜的猪16 天前
Clickhouse诊断工具之chdig
clickhouse
源图客16 天前
ClickHouse介绍与应用
clickhouse
码农周16 天前
ClickHouse 时间范围查询:精准筛选「本月数据」
clickhouse
积跬步,慕至千里18 天前
clickhouse数据库表和doris数据库表迁移starrocks数据库时建表注意事项总结
数据库·clickhouse
Edingbrugh.南空19 天前
Flink ClickHouse 连接器数据读取源码深度解析
java·clickhouse·flink
Edingbrugh.南空19 天前
ClickHouse 全生命周期性能优化
clickhouse·性能优化
Edingbrugh.南空20 天前
Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
大数据·clickhouse·flink