【python】OpenCV—findContours(4.5)

文章目录

1、功能描述

输入图片,计算出图片中的目标到相机间的距离

2、原理分析

用最简单的三角形相似性

已知参数,物体的宽度 W W W,物体到相机的距离 D D D,物体的宽在画面中的像素数 P P P,可以求出相机的焦距 F F F

F = P × D W F = \frac{P \times D}{W} F=WP×D

后续移动物体到不同的距离, W W W 已知, F F F 已知,通过 P P P 即可计算物体到相机间的距离 D D D

D = F × W P D = \frac{F \times W}{ P} D=PF×W

该方法缺点,物体需正对镜头,不然角度产生的物体形变会影响测量精度

可以利用标定求出相机参数,这样应用的鲁棒性会更高

3、代码实现

python 复制代码
# import the necessary packages
from imutils import paths
import numpy as np
import imutils
import cv2

# initialize the known distance from the camera to the object, which
# in this case is 24 inches
KNOWN_DISTANCE = 24.0

# initialize the known object width, which in this case, the piece of
# paper is 12 inches wide
KNOWN_WIDTH = 11.0

# load the furst image that contains an object that is KNOWN TO BE 2 feet
# from our camera, then find the paper marker in the image, and initialize
# the focal length
image = cv2.imread("images/2ft.png")
marker = find_marker(image)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH

导入必要的库函数,配置好 KNOWN_DISTANCE D,KNOWN_WIDTH W,读入图片,通过找到画面中的物体,求出来 P,计算 focalLength F

计算 P 是通过 find_marker 函数实现的

python 复制代码
def find_marker(image):
	# convert the image to grayscale, blur it, and detect edges
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	# cv2.imwrite("gray.jpg", gray)

	gray = cv2.GaussianBlur(gray, (5, 5), 0)
	# cv2.imwrite("gray-blur.jpg", gray)

	edged = cv2.Canny(gray, 35, 125)
	# cv2.imwrite("edged.jpg", edged)

	# find the contours in the edged image and keep the largest one;
	# we'll assume that this is our piece of paper in the image
	cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
	# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
	# cnts = imutils.grab_contours(cnts)

	# img_copy = image.copy()
	# cv2.drawContours(img_copy, cnts, -1, (0,255,0))
	# cv2.imwrite("draw_edged.jpg", img_copy)

	c = max(cnts, key=cv2.contourArea)

	# compute the bounding box of the of the paper region and return it
	return cv2.minAreaRect(c)

输入图片,灰度化,高斯模糊,Canny 算子进行边缘检测,findContours 找出潜在轮廓,求面积最大的轮廓max(cnts, key=cv2.contourArea),求最大面积轮廓的最小外接矩阵

为什么要通过求最大面积轮廓的最小外接矩阵来定位到画面中的物品呢?这里比较灵活,可以尝试其他任何方法,核心目的是找出画面中物体的宽,只是正好样例图片可以

现在开始测试其他距离的效果

python 复制代码
# loop over the images
for imagePath in sorted(paths.list_images("images")):
	# load the image, find the marker in the image, then compute the
	# distance to the marker from the camera
	image = cv2.imread(imagePath)
	marker = find_marker(image)
	inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])

	# draw a bounding box around the image and display it
	box = cv2.BoxPoints(marker) if imutils.is_cv2() else cv2.boxPoints(marker)
	box = np.intp(box)
	cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
	cv2.putText(image, "%.2fft" % (inches / 12),
		(image.shape[1] - 200, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
		2.0, (0, 255, 0), 3)
	cv2.imshow("image", image)
	cv2.waitKey(0)

遍历图片,求最大面积轮廓的最小外接矩阵,调用 distance_to_camera,求实际距离

绘制最大轮廓的最小外接矩阵,注释上距离

这里 12 表示下面的转换关系,foot 和 inches

python 复制代码
def distance_to_camera(knownWidth, focalLength, perWidth):
	# compute and return the distance from the maker to the camera
	return (knownWidth * focalLength) / perWidth

根据 W、F 和 P 来求 D

4、效果展示

输入图片

灰度化后的结果

高斯模糊

Canny 算子计算边缘

找出画面中所有的轮廓

找出轮廓,获取到 P,结合已知的 W 和 D,求出 F

换一个距离,测试一下算法,计算得到 P,根据已知的 W 和 F,求出 D

再换一个距离,测试一下算法,计算得到 P,根据已知的 W 和 F,求出 D

5、完整代码

python 复制代码
# USAGE
# python distance_to_camera.py

# import the necessary packages
from imutils import paths
import numpy as np
import imutils
import cv2

def find_marker(image):
	# convert the image to grayscale, blur it, and detect edges
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	# cv2.imwrite("gray.jpg", gray)

	gray = cv2.GaussianBlur(gray, (5, 5), 0)
	# cv2.imwrite("gray-blur.jpg", gray)

	edged = cv2.Canny(gray, 35, 125)
	# cv2.imwrite("edged.jpg", edged)

	# find the contours in the edged image and keep the largest one;
	# we'll assume that this is our piece of paper in the image
	cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
	# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
	# cnts = imutils.grab_contours(cnts)

	# img_copy = image.copy()
	# cv2.drawContours(img_copy, cnts, -1, (0,255,0))
	# cv2.imwrite("draw_edged.jpg", img_copy)

	c = max(cnts, key=cv2.contourArea)

	# compute the bounding box of the of the paper region and return it
	return cv2.minAreaRect(c)

def distance_to_camera(knownWidth, focalLength, perWidth):
	# compute and return the distance from the maker to the camera
	return (knownWidth * focalLength) / perWidth

# initialize the known distance from the camera to the object, which
# in this case is 24 inches
KNOWN_DISTANCE = 24.0

# initialize the known object width, which in this case, the piece of
# paper is 12 inches wide
KNOWN_WIDTH = 11.0

# load the furst image that contains an object that is KNOWN TO BE 2 feet
# from our camera, then find the paper marker in the image, and initialize
# the focal length
image = cv2.imread("images/2ft.png")
marker = find_marker(image)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH

# loop over the images
for imagePath in sorted(paths.list_images("images")):
	# load the image, find the marker in the image, then compute the
	# distance to the marker from the camera
	image = cv2.imread(imagePath)
	marker = find_marker(image)
	inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])

	# draw a bounding box around the image and display it
	box = cv2.BoxPoints(marker) if imutils.is_cv2() else cv2.boxPoints(marker)
	box = np.intp(box)
	cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
	cv2.putText(image, "%.2fft" % (inches / 12),
		(image.shape[1] - 200, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
		2.0, (0, 255, 0), 3)
	cv2.imshow("image", image)
	cv2.waitKey(0)

6、参考

相关推荐
fmdpenny28 分钟前
Vue3初学之商品的增,删,改功能
开发语言·javascript·vue.js
通信.萌新35 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu40 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing43 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
weixin_3077791343 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
等一场春雨1 小时前
Java设计模式 十四 行为型模式 (Behavioral Patterns)
java·开发语言·设计模式
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
萧若岚1 小时前
Elixir语言的Web开发
开发语言·后端·golang
wave_sky2 小时前
解决使用code命令时的bash: code: command not found问题
开发语言·bash
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask