1 数据集制作
1.1标注数据
Linux/Ubuntu/Mac
至少需要 Python 2.6 (推荐使用 Python 3 或更高版本 及 PyQt5)
Ubuntu Linux (Python 3 + Qt5)
csharp
git clone https://gitcode.com/gh_mirrors/la/labelImg.git
sudo apt-get install pyqt5-dev-tools
cd labelImg
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py
运行python3 labelImg.py
出错, File "/home/wyh/environment_setting/labelImg-master/libs/labelDialog.py", line 37, in __init__ layout.addWidget(bb, alignment=Qt.AlignmentFlag.AlignLeft) AttributeError: type object 'AlignmentFlag' has no attribute 'AlignLeft'
原因:因为 PyQt
或 PySide
的版本问题
解决:如果确定用的时PYQT5
,将layout.addWidget(bb, alignment=Qt.AlignmentFlag.AlignLeft)
更改为layout.addWidget(bb, alignment=Qt.AlignLeft)
1.2 建立对应的数据文件夹
images:
图片数据,labels
:标注转换后的yolo
的txt
文件,xmls
:labelimg
标注的xml
格式数据,class.txt
:标签txt文件
1.3 将标注后的xml转为txt
csharp
#! /usr/local/bin/ python
# -*- coding: utf-8 -*-
# .xml文件转换成.txt文件
import copy
from xml.etree import Element, SubElement, tostring, ElementTree
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
# 检测目标的类别
classes = ["ore carrier", "passenger ship",
"container ship", "bulk cargo carrier",
"general cargo ship", "fishing boat"]
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0 # (x_min + x_max) / 2.0
y = (box[2] + box[3]) / 2.0 # (y_min + y_max) / 2.0
w = box[1] - box[0] # x_max - x_min
h = box[3] - box[2] # y_max - y_min
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
# .xml格式文件的地址
in_file = open('地址1\%s.xml' % (image_id), encoding='UTF-8')
# 生成的.txt格式文件的地址
out_file = open('地址2\%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
# .xml格式文件的地址
xml_path = os.path.join(CURRENT_DIR, '地址1/')
# xml列表
img_xmls = os.listdir(xml_path)
for img_xml in img_xmls:
label_name = img_xml.split('.')[0]
print(label_name)
convert_annotation(label_name)
将代码中路径更改为对应的路径
2 将yolo数据拆分为train、val、test
csharp
import os
import random
import shutil
def split_dataset(images_dir, labels_dir, output_dir, split_ratio=(0.8, 0.1, 0.1)):
"""
将图像和标签数据集划分为训练集、验证集和测试集。
:param images_dir: 图像文件夹路径
:param labels_dir: 标签文件夹路径
:param output_dir: 输出目录路径
:param split_ratio: 划分比例 (train, val, test)
"""
# 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)
for subdir in ['train', 'val', 'test']:
os.makedirs(os.path.join(output_dir, subdir, 'images'), exist_ok=True)
os.makedirs(os.path.join(output_dir, subdir, 'labels'), exist_ok=True)
# 获取所有图像文件名
images = [f for f in os.listdir(images_dir) if f.endswith('.jpg') or f.endswith('.png')]
labels = [f.replace('.jpg', '.txt').replace('.png', '.txt') for f in images]
# 打乱顺序
combined = list(zip(images, labels))
random.shuffle(combined)
images[:], labels[:] = zip(*combined)
# 计算划分点
num_train = int(len(images) * split_ratio[0])
num_val = int(len(images) * split_ratio[1])
# 划分数据集
for i, image in enumerate(images):
label = labels[i]
if i < num_train:
subset = 'train'
elif i < num_train + num_val:
subset = 'val'
else:
subset = 'test'
shutil.copy(os.path.join(images_dir, image), os.path.join(output_dir, subset, 'images', image))
shutil.copy(os.path.join(labels_dir, label), os.path.join(output_dir, subset, 'labels', label))
# 示例调用
split_dataset('/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/origin_data/images',
'/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/origin_data/labels',
'/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/split_data')
运行后如图所示
3 根据数据集添加yaml文件
csharp
import yaml
import os
def create_yaml(output_dir, train_dir, val_dir, test_dir, class_names, num_classes):
"""
创建 YOLOv8 数据集配置文件。
:param output_dir: 输出目录路径
:param train_dir: 训练集目录路径
:param val_dir: 验证集目录路径
:param test_dir: 测试集目录路径
:param class_names: 类别名称列表
:param num_classes: 类别数量
"""
data = {
'train': train_dir,
'val': val_dir,
'test': test_dir,
'nc': num_classes,
'names': class_names
}
with open(os.path.join(output_dir, 'dataset.yaml'), 'w') as f:
yaml.dump(data, f, default_flow_style=False)
# 示例调用
create_yaml('/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/split_data',
'/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/split_data/train/images',
'/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/split_data/val/images',
'/home/wyh/artrc_catkin/src/artrc_yolov8/datasets/split_data/test/images',
['corrosion','craze', 'hide_craze','surface_attach','surface_corrosion','surface_eye',
'surface_injure','surface_oil','thunderstrike'], 9)
运行结果如下文件:
4 训练数据集
csharp
cd ultralytics
yolo task=detect mode=train model=yolov8n.pt data=ultralytics/cfg/datasets/dataset.yaml batch=8 epochs=200 imgsz=640 workers=32 device=0
5 训练后使用
5.1 训练后的各中形式数据转换
5.1.1 将.pt转换为onnx
方式一:利用下述pt_to_onnx.py
进行转换
csharp
#! /usr/local/bin/ python
# -*- coding: utf-8 -*-
from ultralytics import YOLO
model = YOLO("best.pt")
success = model.export(format="onnx", half=False, dynamic=True, opset=17)
print("demo")
csharp
cd ultralytics
python pt_to_onnx.py
方式二:命令行操作转换
csharp
# 到相应的权重文件所在文件夹
cd ultralytics
setconda
conda activate yolov8
yolo mode=export model=yolov8n.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8s.pt format=onnx dynamic=True # 不同模型
5.1.2将.onnx转换为.trt
csharp
cd /environment_setting/tensorrt-alpha/data/yolov8
# 生成trt文件
# 640 ../../../TensorRT-8.4.1.5/bin/trtexec为各路径,根据实际情况填写
../../../TensorRT-8.4.1.5/bin/trtexec --onnx=best.onnx --saveEngine=best.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../TensorRT-8.4.1.5/bin/trtexec --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../TensorRT-8.4.1.5/bin/trtexec --onnx=yolov8m.onnx --saveEngine=yolov8m.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
5.2 利用pt文件进行检测
csharp
#!/home/wyh/.conda/envs/yolov8/bin/python3.8
# -*- coding: utf-8 -*-
import cv2
import torch
import rospy
import numpy as np
from ultralytics import YOLO
from time import time
from std_msgs.msg import Header
from sensor_msgs.msg import Image
from artrc_yolov8.msg import BoundingBox, BoundingBoxes
class Yolo_Dect:
def __init__(self):
# load parameters
weight_path = rospy.get_param('~weight_path', '')
image_topic = rospy.get_param(
'~image_topic', '/camera/color/image_raw')
pub_topic = rospy.get_param('~pub_topic', '/yolov8/BoundingBoxes')
self.camera_frame = rospy.get_param('~camera_frame', '')
conf = rospy.get_param('~conf', '0.5')
self.visualize = rospy.get_param('~visualize', 'True')
# which device will be used
if (rospy.get_param('/use_cpu', 'true')):
self.device = 'cpu'
else:
self.device = 'cuda'
self.model = YOLO(weight_path)
self.model.fuse()
self.model.conf = conf
self.color_image = Image()
self.getImageStatus = False
# Load class color
self.classes_colors = {}
# image subscribe
self.color_sub = rospy.Subscriber(image_topic, Image, self.image_callback,
queue_size=1, buff_size=52428800)
# output publishers
self.position_pub = rospy.Publisher(
pub_topic, BoundingBoxes, queue_size=1)
self.image_pub = rospy.Publisher(
'/yolov8/detection_image', Image, queue_size=1)
# Load image and detect
self.load_and_detect()
def image_callback(self, image):
# Existing image callback logic
pass
def load_and_detect(self):
# Load image from file or a specific source
image_path = '/home/wyh/artrc_catkin/src/artrc_yolov8/image/60.jpg' # Replace with your image path
self.color_image = cv2.imread(image_path)
if self.color_image is None:
rospy.logerr("Failed to load image from path: %s", image_path)
return
self.color_image = cv2.cvtColor(self.color_image, cv2.COLOR_BGR2RGB)
results = self.model(self.color_image, show=False, conf=0.3)
self.dectshow(results, self.color_image.shape[0], self.color_image.shape[1])
cv2.waitKey(3)
def dectshow(self, results, height, width):
# Existing detection logic
self.frame = results[0].plot()
print(str(results[0].speed['inference']))
fps = 1000.0 / results[0].speed['inference']
cv2.putText(self.frame, f'FPS: {int(fps)}', (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, cv2.LINE_AA)
self.boundingBoxes = BoundingBoxes()
self.boundingBoxes.header = Header(stamp=rospy.Time.now())
self.boundingBoxes.image_header = Header(stamp=rospy.Time.now())
# 统计数量
class_count = {}
total_count = 0
for result in results[0].boxes:
boundingBox = BoundingBox()
boundingBox.xmin = np.int64(result.xyxy[0][0].item())
boundingBox.ymin = np.int64(result.xyxy[0][1].item())
boundingBox.xmax = np.int64(result.xyxy[0][2].item())
boundingBox.ymax = np.int64(result.xyxy[0][3].item())
boundingBox.Class = results[0].names[result.cls.item()]
boundingBox.probability = result.conf.item()
self.boundingBoxes.bounding_boxes.append(boundingBox)
if boundingBox.Class in class_count:
class_count[boundingBox.Class] += 1
else:
class_count[boundingBox.Class] = 1
total_count += 1
print("cl:",boundingBox.Class)
self.position_pub.publish(self.boundingBoxes)
self.publish_image(self.frame, height, width)
print("data",self.boundingBoxes)
print("Class Count:", class_count)
print("total count:",total_count)
# if self.visualize:
# cv2.imshow('YOLOv8', self.frame)
def publish_image(self, imgdata, height, width):
image_temp = Image()
header = Header(stamp=rospy.Time.now())
header.frame_id = self.camera_frame
image_temp.height = height
image_temp.width = width
image_temp.encoding = 'bgr8'
image_temp.data = np.array(imgdata).tobytes()
image_temp.header = header
image_temp.step = width * 3
self.image_pub.publish(image_temp)
def main():
rospy.init_node('yolov8_ros', anonymous=True)
yolo_dect = Yolo_Dect()
rospy.spin()
if __name__ == "__main__":
main()
5.3 利用.onnx文件进行检测
csharp
#!/home/wyh/.conda/envs/yolov8/bin/python3.8
# -*- coding: utf-8 -*-
import onnxruntime as rt
import numpy as np
import cv2
import matplotlib.pyplot as plt
# 定义类别标签
CLASS_NAMES = ['corrosion','craze', 'hide_craze','surface_attach','surface_corrosion','surface_eye',
'surface_injure','surface_oil','thunderstrike'] # 请根据你的模型定义实际的类标签
COLOR_MAP = {
"label_0": (255, 0, 0), # 红色
"label_1": (0, 255, 0), # 绿色
"label_2": (0, 0, 255), # 蓝色
"label_3": (255, 255, 0), # 黄色
"label_4": (255, 0, 255), # 品红色
"label_5": (0, 255, 255), # 青色
"label_6": (128, 0, 128), # 紫色
"label_7": (255, 165, 0), # 橙色
"label_8": (128, 128, 128), # 灰色
}
def nms(pred, conf_thres, iou_thres):
conf = pred[..., 4] > conf_thres
box = pred[conf == True]
cls_conf = box[..., 5:]
cls = []
for i in range(len(cls_conf)):
cls.append(int(np.argmax(cls_conf[i])))
total_cls = list(set(cls))
output_box = []
for i in range(len(total_cls)):
clss = total_cls[i]
cls_box = []
for j in range(len(cls)):
if cls[j] == clss:
box[j][5] = clss
cls_box.append(box[j][:6])
cls_box = np.array(cls_box)
box_conf = cls_box[..., 4]
box_conf_sort = np.argsort(box_conf)
max_conf_box = cls_box[box_conf_sort[len(box_conf) - 1]]
output_box.append(max_conf_box)
cls_box = np.delete(cls_box, 0, 0)
while len(cls_box) > 0:
max_conf_box = output_box[len(output_box) - 1]
del_index = []
for j in range(len(cls_box)):
current_box = cls_box[j]
interArea = getInter(max_conf_box, current_box)
iou = getIou(max_conf_box, current_box, interArea)
if iou > iou_thres:
del_index.append(j)
cls_box = np.delete(cls_box, del_index, 0)
if len(cls_box) > 0:
output_box.append(cls_box[0])
cls_box = np.delete(cls_box, 0, 0)
return output_box
def getIou(box1, box2, inter_area):
box1_area = box1[2] * box1[3]
box2_area = box2[2] * box2[3]
union = box1_area + box2_area - inter_area
iou = inter_area / union
return iou
def getInter(box1, box2):
box1_x1, box1_y1, box1_x2, box1_y2 = box1[0] - box1[2] / 2, box1[1] - box1[3] / 2, \
box1[0] + box1[2] / 2, box1[1] + box1[3] / 2
box2_x1, box2_y1, box2_x2, box2_y2 = box2[0] - box2[2] / 2, box2[1] - box1[3] / 2, \
box2[0] + box2[2] / 2, box2[1] + box2[3] / 2
if box1_x1 > box2_x2 or box1_x2 < box2_x1:
return 0
if box1_y1 > box2_y2 or box1_y2 < box2_y1:
return 0
x_list = [box1_x1, box1_x2, box2_x1, box2_x2]
x_list = np.sort(x_list)
x_inter = x_list[2] - x_list[1]
y_list = [box1_y1, box1_y2, box2_y1, box2_y2]
y_list = np.sort(y_list)
y_inter = y_list[2] - y_list[1]
inter = x_inter * y_inter
return inter
# 画框并添加标签
def draw(img, xscale, yscale, pred):
img_ = img.copy()
if len(pred):
for detect in pred:
label = int(detect[5]) # 获取类别标签
label_name = CLASS_NAMES[label] # 通过类索引获取类名
detect_coords = [int((detect[0] - detect[2] / 2) * xscale),
int((detect[1] - detect[3] / 2) * yscale),
int((detect[0] + detect[2] / 2) * xscale),
int((detect[1] + detect[3] / 2) * yscale)]
# 获取颜色,如果没有对应的颜色,就使用默认颜色
color = COLOR_MAP.get(label_name, (255, 255, 255)) # 默认为白色
# 绘制矩形框
img_ = cv2.rectangle(img_, (detect_coords[0], detect_coords[1]),
(detect_coords[2], detect_coords[3]), color, 2)
# 绘制标签
img_ = cv2.putText(img_, label_name, (detect_coords[0], detect_coords[1]-5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
return img_
if __name__ == '__main__':
height, width = 640, 640
img0 = cv2.imread('/home/wyh/artrc_catkin/src/artrc_yolov8/image/60.jpg')
x_scale = img0.shape[1] / width
y_scale = img0.shape[0] / height
img = img0 / 255.
img = cv2.resize(img, (width, height))
img = np.transpose(img, (2, 0, 1))
data = np.expand_dims(img, axis=0)
sess = rt.InferenceSession('/home/wyh/artrc_catkin/src/artrc_yolov8/weights/best.onnx')
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred = sess.run([label_name], {input_name: data.astype(np.float32)})[0]
pred = np.squeeze(pred)
pred = np.transpose(pred, (1, 0))
pred_class = pred[..., 4:]
pred_conf = np.max(pred_class, axis=-1)
pred = np.insert(pred, 4, pred_conf, axis=-1)
result = nms(pred, 0.3, 0.45)
ret_img = draw(img0, x_scale, y_scale, result)
# 使用OpenCV显示图像
cv2.imshow('Detection Result', ret_img)
cv2.waitKey(0) # 等待按键事件
cv2.destroyAllWindows() # 关闭所有OpenCV窗口
5.3 利用.trt文件进行检测
csharp
#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <std_msgs/Header.h>
#include <opencv2/opencv.hpp>
#include "../include/artrc_yolov8/yolo.h"
#include "../include/artrc_yolov8/yolov8.h"
#include <NvInfer.h>
#include <NvUtils.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <fstream>
#include "../include/artrc_yolov8/yolov8_trt.h"
#include <mutex>
cv::Mat image_;
namespace artrc_yolov8
{
YoloResultData::~YoloResultData(){
;
}
void YoloResultData::init(){
ros::NodeHandle nh;
img_receive_sub_ = nh.subscribe("/usb_camera/image_raw",1,&YoloResultData::image_receive_callback,this);
img_detect_pub_ = nh.advertise<sensor_msgs::Image>("/detect_img", 1);
boundingbox_result_pub_ = nh.advertise<artrc_yolov8::boundingbox_result_msgs>("/boundingbox_result",1);
}
void YoloResultData::processImage()
{
if (!image_.empty()) {
// 在这里处理图像
cv::Mat processedImage = image_.clone(); // 例如,你可以对图像进行一些处理
// 显示图像
// cv::imshow("Processed Image", processedImage);
// cv::waitKey(30); // 等待30毫秒
} else {
ROS_WARN("No image received yet.");
}
}
// 设置检测内参数
void YoloResultData::setParameters(utils::InitParameter& initParameters)
{
initParameters.class_names = utils::dataSets::coco80;
initParameters.num_class = 80; // for coco
initParameters.batch_size = 8;
initParameters.dst_h = 640;
initParameters.dst_w = 640;
initParameters.input_output_names = { "images", "output0" };
initParameters.conf_thresh = 0.25f;
initParameters.iou_thresh = 0.45f;
initParameters.save_path = "";
}
// yolo模型预测
void YoloResultData::task(YOLOV8& yolo, const utils::InitParameter& param, std::vector<cv::Mat>& imgsBatch, const int& delayTime, const int& batchi,
const bool& isShow, const bool& isSave)
{
if (imgsBatch.empty()) {
std::cerr << "Input image batch is empty." << std::endl;
return;
}
// std::cout<< "--------------------------------"<< std::endl;
std::clock_t start = std::clock();
utils::DeviceTimer d_t0; yolo.copy(imgsBatch); float t0 = d_t0.getUsedTime();
utils::DeviceTimer d_t1; yolo.preprocess(imgsBatch); float t1 = d_t1.getUsedTime();
utils::DeviceTimer d_t2; yolo.infer(); float t2 = d_t2.getUsedTime();
utils::DeviceTimer d_t3; yolo.postprocess(imgsBatch); float t3 = d_t3.getUsedTime();
std::clock_t end = std::clock();
// 计算时间差
double duration = static_cast<double>(end - start) / CLOCKS_PER_SEC;
// 输出运行时间
// std::cout << "程序运行时间: " << duration << " 秒" << std::endl;
// std::cout << "delayTime"<< delayTime << std::endl;
if(isShow)
utils::show(yolo.getObjectss(), param.class_names, delayTime, imgsBatch);
// if(isSave)
// utils::save(yolo.getObjectss(), param.class_names, param.save_path, imgsBatch, param.batch_size, batchi);
// 在终端输出检测结果
YoloResultData::result_show(yolo, param, t1, t2, t3);
// YoloResultData::result_show(yolo, param);
// // std::cout<<"77777777777777777"<<std::endl;
for (size_t bi = 0; bi < imgsBatch.size(); bi++)
{
cv_bridge::CvImagePtr cv_ptr(new cv_bridge::CvImage);
cv_ptr->image = imgsBatch[bi];
cv_ptr->encoding = "bgr8";
img_detect_pub_.publish(cv_ptr->toImageMsg());
}
yolo.reset();
}
// 显示输出结果
void YoloResultData::result_show(const YOLOV8& yolo, const utils::InitParameter& param, float t1, float t2, float t3)
// void YoloResultData::result_show(const YOLOV8& yolo, const utils::InitParameter& param)
{
const auto& objectss = yolo.getObjectss();
for (size_t bi = 0; bi < objectss.size(); bi++)
{
for (const auto& box : objectss[bi])
{
// std::cout<< "preprocess time:"<< t1 / param.batch_size <<"; "
// "infer time:"<< t2 / param.batch_size << "; "
// "postprocess time:"<<t3 / param.batch_size<<std::endl;
// std::cout << "Image " << bi << ": Detected box - "
// std::cout << "Label: " << param.class_names[box.label] << ", "
// << "Confidence: " << box.confidence << ", "
// << "Bounding Box: [" << box.left << ", "
// << box.top << ", "
// << box.right << ", "
// << box.bottom << "]" << std::endl;
pub_msg_.label = param.class_names[box.label];
pub_msg_.confidence = box.confidence;
pub_msg_.xmin = box.left;
pub_msg_.xmax = box.right;
pub_msg_.ymin = box.top;
// 填充边界框数组
pub_msg_.bounding_box.clear(); // 确保清空之前的数据
pub_msg_.bounding_box.push_back(box.left);
pub_msg_.bounding_box.push_back(box.top);
pub_msg_.bounding_box.push_back(box.right);
pub_msg_.bounding_box.push_back(box.bottom);
boundingbox_result_pub_.publish(pub_msg_);
}
}
}
// 订阅图像数据
void YoloResultData::image_receive_callback(const sensor_msgs::Image& image_msg){
cv_bridge::CvImagePtr cv_ptr;
try {
cv_ptr = cv_bridge::toCvCopy(image_msg, sensor_msgs::image_encodings::BGR8);
// 处理图像(例如显示)
image_ = cv_ptr->image;
// cv::imshow("Image", cv_ptr->image);
// cv::waitKey(30); // 等待30毫秒
} catch (cv_bridge::Exception& e) {
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
}
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "yolov8_ros_node");
artrc_yolov8::YoloResultData YoloResultData_node;
YoloResultData_node.init();
utils::InitParameter param;
YoloResultData_node.setParameters(param);
std::string model_path = "/home/wyh/artrc_catkin/src/artrc_yolov8/weights/yolov8n.trt";//加载模型
std::string video_path = "/home/wyh/artrc_catkin/src/artrc_yolov8/image/行人视频.mp4";
std::string image_path = "/home/wyh/artrc_catkin/src/artrc_yolov8/image/6406406.jpg";
int camera_id = 0;
// get input 输入源 判断
utils::InputStream source;
source = utils::InputStream::IMAGE;
// source = utils::InputStream::VIDEO;
// source = utils::InputStream::CAMERA;
// source = utils::InputStream::TOPIC_IMAGE;
// update params from command line parser
int size = -1; // w or h
int batch_size = 8;
bool is_show = false;
bool is_save = false;
int total_batches = 0;
int delay_time = 50;
// / 从参数服务器获取参数
ros::param::get("~size", size);
ros::param::get("~batch_size", batch_size);
ros::param::get("~show", is_show);
// 参数赋值
param.dst_h = param.dst_w = size;
param.batch_size = batch_size;
param.is_show = is_show;
// cv::VideoCapture capture(1);
cv::VideoCapture capture(1);
if (!setInputStream(source, image_path, video_path, camera_id,
capture, total_batches, delay_time, param))
{
sample::gLogError << "read the input data errors!" << std::endl;
return -1;
}
std::vector<unsigned char> trt_file = utils::loadModel(model_path);
// // read model
if (trt_file.empty()){
std::cout << "trt_file is empty!" << std::endl;
}
else{
std::cout << "trt_file is load!" << std::endl;}
YOLOV8 yolo(param);
// // init model
if (!yolo.init(trt_file)){
std::cout << "initEngine() ocur errors!" << std::endl;
}
else{
std::cout << "initEngine() ocur success!" << std::endl;
}
yolo.check();
std::vector<cv::Mat> imgs_batch;
imgs_batch.reserve(param.batch_size);
int batchi = 0;
cv::Mat frame;
ros::Rate rate(50);
while (ros::ok())
{
// std::cout << "imgs_batch_" << imgs_batch.size() << ";"<< "batch_size" << param.batch_size << std::endl;
if (imgs_batch.size() < param.batch_size) // get input
{
if (source == utils::InputStream::VIDEO)
{
capture.read(frame);
// std::cout<<"00000_video"<< std::endl;
}
else if (source == utils::InputStream::CAMERA)
{
capture.read(frame);
// std::cout<<"11111_camera"<< std::endl;
}
else if (source == utils::InputStream::IMAGE)
{
// std::cout<<"22222_image"<< std::endl;
// frame = cv::imread(image_path);// 获取图像数据
frame = YoloResultData_node.image_;
}
else
{
// std::cout<<"33333_topic"<<std::endl;
frame = YoloResultData_node.image_;
}
if (!frame.empty())
{
imgs_batch.emplace_back(frame.clone());
}
else
{
int delay_time = 5;
sample::gLogWarning << "no more video or camera frame" << std::endl;
YoloResultData_node.task(yolo, param, imgs_batch, delay_time, batchi, is_show, is_save);
imgs_batch.clear();
batchi++;
}
}
else
{
int delay_time = 1;
YoloResultData_node.task(yolo, param, imgs_batch, delay_time, batchi, is_show, is_save);
imgs_batch.clear();
batchi++;
}
ros::spinOnce(); // Handle all callbacks
rate.sleep(); // Sleep for a while before next loop iteration
}
// ros::spin();
return 0;
}
csharp
# 将下述程序参数更改为自己类别
initParameters.class_names = utils::dataSets::coco80;
initParameters.num_class = 80;
# 将权重文件替换为相应的文件