1.首先是我手里生成的一个yolo11的.rknn模型:

2.比对一下yolov5的模型:

2.1 yolov5模型的后期处理:
python
outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
np.save('./onnx_yolov5_0.npy', outputs[0])
np.save('./onnx_yolov5_1.npy', outputs[1])
np.save('./onnx_yolov5_2.npy', outputs[2])
print('done')
# post process
input0_data = outputs[0]
input1_data = outputs[1]
input2_data = outputs[2]
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
input_data = list()
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
然后:
python
def yolov5_post_process(input_data):
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
boxes, classes, scores = [], [], []
for input, mask in zip(input_data, masks):
b, c, s = process(input, mask, anchors)
b, c, s = filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
然后:
python
def process(input, mask, anchors):
anchors = [anchors[i] for i in mask]
grid_h, grid_w = map(int, input.shape[0:2])
box_confidence = input[..., 4]
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = input[..., 5:]
box_xy = input[..., :2]*2 - 0.5
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy *= int(IMG_SIZE/grid_h)
box_wh = pow(input[..., 2:4]*2, 2)
box_wh = box_wh * anchors
box = np.concatenate((box_xy, box_wh), axis=-1)
return box, box_confidence, box_class_probs
3.修改1 - 基于昨天在宿主机上成功执行的onnx代码:
python
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
from math import exp
import cv2
import numpy as np
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
RKNN_MODEL = r'/home/firefly/app/models/sim_moonpie-640-640_rk3588.rknn'
IMG_PATH = '/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = False
CLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush', 'moonpie']
meshgrid = []
class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
nmsThresh = 0.45
objectThresh = 0.5
input_imgH = 640
input_imgW = 640
from rknn.api import RKNN
def rk3588_detect(model, pic, classes):
rknn = RKNN(verbose=True)
'''
# model config
rknn.config(mean_values=[[0, 0, 0]],
std_values=[[255,255,255]],
quant_img_RGB2BGR=False,
target_platform='rk3588')
'''
rknn.load_rknn(path=model)
rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)
outputs = rknn.inference(inputs=[pic], data_format=['nhwc'])
return outputs
class DetectBox:
def __init__(self, classId, score, xmin, ymin, xmax, ymax):
self.classId = classId
self.score = score
self.xmin = xmin
self.ymin = ymin
self.xmax = xmax
self.ymax = ymax
class YOLOV11DetectObj:
def __init__(self):
pass
def GenerateMeshgrid(self):
for index in range(headNum):
for i in range(mapSize[index][0]):
for j in range(mapSize[index][1]):
meshgrid.append(j + 0.5)
meshgrid.append(i + 0.5)
def IOU(self, xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2):
xmin = max(xmin1, xmin2)
ymin = max(ymin1, ymin2)
xmax = min(xmax1, xmax2)
ymax = min(ymax1, ymax2)
innerWidth = xmax - xmin
innerHeight = ymax - ymin
innerWidth = innerWidth if innerWidth > 0 else 0
innerHeight = innerHeight if innerHeight > 0 else 0
innerArea = innerWidth * innerHeight
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
total = area1 + area2 - innerArea
return innerArea / total
def NMS(self, detectResult):
predBoxs = []
sort_detectboxs = sorted(detectResult, key=lambda x: x.score, reverse=True)
for i in range(len(sort_detectboxs)):
xmin1 = sort_detectboxs[i].xmin
ymin1 = sort_detectboxs[i].ymin
xmax1 = sort_detectboxs[i].xmax
ymax1 = sort_detectboxs[i].ymax
classId = sort_detectboxs[i].classId
if sort_detectboxs[i].classId != -1:
predBoxs.append(sort_detectboxs[i])
for j in range(i + 1, len(sort_detectboxs), 1):
if classId == sort_detectboxs[j].classId:
xmin2 = sort_detectboxs[j].xmin
ymin2 = sort_detectboxs[j].ymin
xmax2 = sort_detectboxs[j].xmax
ymax2 = sort_detectboxs[j].ymax
iou = IOU(xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2)
if iou > nmsThresh:
sort_detectboxs[j].classId = -1
return predBoxs
def sigmoid(self, x):
return 1 / (1 + exp(-x))
def postprocess(self, out, img_h, img_w):
print('postprocess ... ')
detectResult = []
output = []
for i in range(len(out)):
print(out[i].shape)
output.append(out[i].reshape((-1)))
scale_h = img_h / input_imgH
scale_w = img_w / input_imgW
gridIndex = -2
cls_index = 0
cls_max = 0
for index in range(headNum):
reg = output[index * 2 + 0]
cls = output[index * 2 + 1]
for h in range(mapSize[index][0]):
for w in range(mapSize[index][1]):
gridIndex += 2
if 1 == class_num:
cls_max = sigmoid(cls[0 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])
cls_index = 0
else:
for cl in range(class_num):
cls_val = cls[cl * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w]
if 0 == cl:
cls_max = cls_val
cls_index = cl
else:
if cls_val > cls_max:
cls_max = cls_val
cls_index = cl
cls_max = self.sigmoid(cls_max)
if cls_max > objectThresh:
regdfl = []
for lc in range(4):
sfsum = 0
locval = 0
for df in range(16):
temp = exp(reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w])
reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] = temp
sfsum += temp
for df in range(16):
sfval = reg[((lc * 16) + df) * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w] / sfsum
locval += sfval * df
regdfl.append(locval)
x1 = (meshgrid[gridIndex + 0] - regdfl[0]) * strides[index]
y1 = (meshgrid[gridIndex + 1] - regdfl[1]) * strides[index]
x2 = (meshgrid[gridIndex + 0] + regdfl[2]) * strides[index]
y2 = (meshgrid[gridIndex + 1] + regdfl[3]) * strides[index]
xmin = x1 * scale_w
ymin = y1 * scale_h
xmax = x2 * scale_w
ymax = y2 * scale_h
xmin = xmin if xmin > 0 else 0
ymin = ymin if ymin > 0 else 0
xmax = xmax if xmax < img_w else img_w
ymax = ymax if ymax < img_h else img_h
box = DetectBox(cls_index, cls_max, xmin, ymin, xmax, ymax)
detectResult.append(box)
# NMS
print('detectResult:', len(detectResult))
predBox = self.NMS(detectResult)
return predBox
def precess_image(self, img_src, resize_w, resize_h):
print(f'{type(img_src)}')
image = cv2.resize(img_src, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.astype(np.float32)
image /= 255.0
return image
def detect(self, img_path):
self.GenerateMeshgrid()
orig = cv2.imread(img_path)
if orig is None:
print(f"无法读取图像: {img_path}")
return
img_h, img_w = orig.shape[:2]
image = self.precess_image(orig, input_imgW, input_imgH)
image = image.transpose((2, 0, 1))
image = np.expand_dims(image, axis=0)
#image = np.ones((1, 3, 640, 640), dtype=np.uint8)
# print(image.shape)
#ort_session = ort.InferenceSession(ONNX_MODEL)
#pred_results = (ort_session.run(None, {'data': image}))
pred_results = rk3588_detect(RKNN_MODEL, image, CLASSES)
out = []
for i in range(len(pred_results)):
out.append(pred_results[i])
predbox = self.postprocess(out, img_h, img_w)
print('obj num is :', len(predbox))
for i in range(len(predbox)):
xmin = int(predbox[i].xmin)
ymin = int(predbox[i].ymin)
xmax = int(predbox[i].xmax)
ymax = int(predbox[i].ymax)
classId = predbox[i].classId
score = predbox[i].score
cv2.rectangle(orig, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
ptext = (xmin, ymin)
title = CLASSES[classId] + "%.2f" % score
cv2.putText(orig, title, ptext, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA)
cv2.imwrite('./test_onnx_result.jpg', orig)
if __name__ == '__main__':
print('This is main ....')
img_path = IMG_PATH
obj = YOLOV11DetectObj()
obj.detect(img_path)
输出不对:
firefly@firefly:~/app/test$ python3 ./detect_rk3588.py
This is main ....
<class 'numpy.ndarray'>
I rknn-toolkit2 version: 2.3.0
I target set by user is: rk3588
postprocess ...
(1, 64, 80, 80)
(1, 81, 80, 80)
(1, 64, 40, 40)
(1, 81, 40, 40)
(1, 64, 20, 20)
(1, 81, 20, 20)
detectResult: 0
obj num is : 0
4.修改2 - 基于yolov5.rknn代码
4.1 似乎有如下映射关系:
似乎:yolo11.output5 == yolo5.output2,
yolo11.output3 == yolo5.output1,
yolo11.output1 == yolo5.output
python
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import sys
import urllib
import traceback
import time
import numpy as np
import cv2
from rknn.api import RKNN
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
# Model from https://github.com/airockchip/rknn_model_zoo yolov11->selftrained. yolo11s?
ONNX_MODEL = r'/home/firefly/app/models/yolo11_selfgen.onnx'
RKNN_MODEL = r'/home/firefly/app/models/new_moonpie_yolo11_640x640.rknn'
IMG_PATH = r'/home/firefly/app/images/cake26.jpg'
QUANTIZE_ON = True
DATASET=r'./dataset.txt'
CLASSES = ['moonpie', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
meshgrid = []
class_num = len(CLASSES)
headNum = 3
strides = [8, 16, 32]
mapSize = [[80, 80], [40, 40], [20, 20]]
input_imgH = 640
input_imgW = 640
IMG_SIZE = input_imgH
QUANTIZE_ON = True
OBJ_THRESH = 0.25
NMS_THRESH = 0.45
def xywh2xyxy(x):
# Convert [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def process(input, mask, anchors):
anchors = [anchors[i] for i in mask]
grid_h, grid_w = map(int, input.shape[0:2])
box_confidence = input[..., 4]
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = input[..., 5:]
box_xy = input[..., :2]*2 - 0.5
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy *= int(IMG_SIZE/grid_h)
box_wh = pow(input[..., 2:4]*2, 2)
box_wh = box_wh * anchors
box = np.concatenate((box_xy, box_wh), axis=-1)
return box, box_confidence, box_class_probs
def filter_boxes(boxes, box_confidences, box_class_probs):
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
# Arguments
boxes: ndarray, boxes of objects.
box_confidences: ndarray, confidences of objects.
box_class_probs: ndarray, class_probs of objects.
# Returns
boxes: ndarray, filtered boxes.
classes: ndarray, classes for boxes.
scores: ndarray, scores for boxes.
"""
boxes = boxes.reshape(-1, 4)
box_confidences = box_confidences.reshape(-1)
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
_box_pos = np.where(box_confidences >= OBJ_THRESH)
boxes = boxes[_box_pos]
box_confidences = box_confidences[_box_pos]
box_class_probs = box_class_probs[_box_pos]
class_max_score = np.max(box_class_probs, axis=-1)
classes = np.argmax(box_class_probs, axis=-1)
_class_pos = np.where(class_max_score >= OBJ_THRESH)
boxes = boxes[_class_pos]
classes = classes[_class_pos]
scores = (class_max_score* box_confidences)[_class_pos]
return boxes, classes, scores
def nms_boxes(boxes, scores):
"""Suppress non-maximal boxes.
# Arguments
boxes: ndarray, boxes of objects.
scores: ndarray, scores of objects.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= NMS_THRESH)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def yolov5_post_process(input_data):
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
boxes, classes, scores = [], [], []
for input, mask in zip(input_data, masks):
b, c, s = process(input, mask, anchors)
b, c, s = filter_boxes(b, c, s)
boxes.append(b)
classes.append(c)
scores.append(s)
boxes = np.concatenate(boxes)
boxes = xywh2xyxy(boxes)
classes = np.concatenate(classes)
scores = np.concatenate(scores)
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = nms_boxes(b, s)
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
return boxes, classes, scores
def draw(image, boxes, scores, classes):
"""Draw the boxes on the image.
# Argument:
image: original image.
boxes: ndarray, boxes of objects.
classes: ndarray, classes of objects.
scores: ndarray, scores of objects.
all_classes: all classes name.
"""
print("{:^12} {:^12} {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
print('-' * 50)
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = box
top = int(top)
left = int(left)
right = int(right)
bottom = int(bottom)
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
(top, left - 6),
cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2)
print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, top, left, right, bottom))
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def detect_on_ubuntu(onnx_model_path=ONNX_MODEL, rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):
# Create RKNN object
rknn = RKNN(verbose=True)
# pre-process config
print('--> Config model')
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')
print('done')
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=onnx_model_path)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export RKNN model
print('--> Export rknn model')
ret = rknn.export_rknn(rknn_path)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread(image_path)
# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
# Inference
print('--> Running model')
img2 = np.expand_dims(img, 0)
np.save('./raw_yolov11_in.npy', [img2])
outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
np.save('./onnx_yolov11_0_raw.npy', outputs[1])
np.save('./onnx_yolov11_1_raw.npy', outputs[3])
np.save('./onnx_yolov11_2_raw.npy', outputs[5])
print('done')
# post process
input0_data = outputs[1]
input1_data = outputs[3]
input2_data = outputs[5]
# 创建一个全零数组,用于填充
# 计算需要填充的通道数
pad_channels = 255 - len(classes)
padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)
input0_data = np.concatenate((input0_data, padding), axis=1)
padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)
input1_data = np.concatenate((input1_data, padding), axis=1)
padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)
input2_data = np.concatenate((input2_data, padding), axis=1)
np.save('./onnx_yolov11_0.npy', input0_data)
np.save('./onnx_yolov11_1.npy', input1_data)
np.save('./onnx_yolov11_2.npy', input2_data)
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
input_data = list()
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
boxes, classes, scores = yolov5_post_process(input_data)
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if boxes is not None:
draw(img_1, boxes, scores, classes)
cv2.imwrite('result.jpg', img_1)
print('Save results to result.jpg!')
rknn.release()
def precess_image(img_src, resize_w, resize_h):
orig = cv2.imread(img_src)
if orig is None:
print(f"无法读取图像: {img_path}")
return
img_h, img_w = orig.shape[:2]
print(f'{type(orig)}')
image = cv2.resize(orig, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.astype(np.float32)
image /= 255.0
'''
# Set inputs
img = cv2.imread(IMG_PATH)
# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
# Inference
print('--> Running model')
img2 = np.expand_dims(img, 0)
'''
return image
def detect_on_rk3588(rknn_path=RKNN_MODEL, image_path=IMG_PATH, classes=CLASSES):
# Create RKNN object
rknn = RKNN(verbose=True)
# pre-process config
print('--> Config model')
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')
print('done')
# Load ONNX model
ret = rknn.load_rknn(rknn_path)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime(target="rk3588", core_mask=RKNN.NPU_CORE_AUTO)
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
img2 = precess_image(image_path, input_imgW, input_imgH)
np.save('./raw_yolov11_in.npy', [img2])
outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
np.save('./raw_yolov11_0.npy', outputs[1])
np.save('./raw_yolov11_1.npy', outputs[3])
np.save('./raw_yolov11_2.npy', outputs[5])
print('done')
# 创建一个全零数组,用于填充
# 计算需要填充的通道数
pad_channels = 255 - len(classes)
padding = np.zeros((1, pad_channels, 80, 80), dtype=np.float32)
input0_data = np.concatenate((input0_data, padding), axis=1)
padding = np.zeros((1, pad_channels, 40, 40), dtype=np.float32)
input1_data = np.concatenate((input1_data, padding), axis=1)
padding = np.zeros((1, pad_channels, 20, 20), dtype=np.float32)
input2_data = np.concatenate((input2_data, padding), axis=1)
np.save('./modified_yolov11_0.npy', input0_data)
np.save('./modified_yolov11_1.npy', input1_data)
np.save('./modified_yolov11_2.npy', input2_data)
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
input_data = list()
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
boxes, classes, scores = yolov5_post_process(input_data)
img = cv2.imread(image_path)
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if boxes is not None:
draw(img_1, boxes, scores, classes)
cv2.imwrite('rknn_detect_result.jpg', img_1)
print('Save results to rknn_detect_result.jpg!')
else:
print('target can not be found!')
rknn.release()
if __name__ == '__main__':
detect_on_ubuntu(ONNX_MODEL, RKNN_MODEL, IMG_PATH, CLASSES)
#detect_on_rk3588(RKNN_MODEL, IMG_PATH, CLASSES)
5.结论:
最终通过仔细核对yolov5, yolo11, onnx几个模型的输入输出参数,发现了这样的事情:
- yolov11 的输出参数有6个,大概率,按照上面的结论是,1,3,5相当于原来的输出参数0,1,2
- yolov11的输出的6个参数,第二维尺寸,现在不是255(-1)个,而是len(classes)个。
- 我的问题在于我在训练时把classes设置为81,而在导出.rknn时,仍然导出为80.所以,结果就是onnx模式访问正常,而.rknn方式访问错误。
- yolo detect代码中的.save是瑞芯微的那些同志在调试接口时留下的一些调试语句,它们不必存在。
- rknn代码输入输出参数建议u8化,在simluation环境传递的是float32。这个修改结束,应该速度会快不少。
- 还有,yolo detect的matrix pack in pack out时,效率很低,他还在进行float转换。这个我没有仔细看代码,理论上,onnx的识别信息析取是更快的。
还在测试。如果确认最终稿的结论成立。我会在这个帖子里留下标记。上面的两端代码没有大问题,我在测试成功后会更新,现在就是对的。