木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

数据集说明

木材表面缺陷检测数据集是用于训练和验证人工智能算法,以帮助自动识别和检测木材表面的缺陷,如裂纹、疤痕、孔洞等。这对于木材行业非常重要,可以提高生产过程的效率和质量控制水平。

本文提供的木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

标注信息:

主要有三个标签: matsong ,matmuc,sau,matchet

训练模型验证:

对应的标签信息如下:

{

"predictions": [

{

"x": 314.5,

"y": 417.5,

"width": 81,

"height": 117,

"confidence": 0.908,

"class": "matchet",

"class_id": 0,

"detection_id": "d7caf043-e667-4232-9a1a-02fa2b8c1966"

},

{

"x": 319,

"y": 340.5,

"width": 72,

"height": 43,

"confidence": 0.797,

"class": "sau",

"class_id": 3,

"detection_id": "9128bbd1-e013-46c3-850a-89e860235f5d"

},

{

"x": 927.5,

"y": 305,

"width": 57,

"height": 110,

"confidence": 0.743,

"class": "matmuc",

"class_id": 1,

"detection_id": "506d0a80-917a-4f56-bef4-f773418152ea"

}

]

}

标签信息如下:

{

"predictions": [

{

"x": 848,

"y": 490.5,

"width": 208,

"height": 225,

"confidence": 0.876,

"class": "sau",

"class_id": 3,

"detection_id": "39d0d646-9bfb-4c67-ae82-81057f55c51a"

},

{

"x": 478,

"y": 321.5,

"width": 126,

"height": 51,

"confidence": 0.814,

"class": "sau",

"class_id": 3,

"detection_id": "23c002bc-8193-46b6-9c73-bbdf197bab11"

}

]

}

数据集下载地址:

yolov11:https://download.csdn.net/download/pbymw8iwm/90368938

yolov9:https://download.csdn.net/download/pbymw8iwm/90368936

yolov8:https://download.csdn.net/download/pbymw8iwm/90368933

yolov7:https://download.csdn.net/download/pbymw8iwm/90368932

yolov5:https://download.csdn.net/download/pbymw8iwm/90368934

darknet:https://download.csdn.net/download/pbymw8iwm/90368937

coco json:https://download.csdn.net/download/pbymw8iwm/90368931

pasical voc xml: https://download.csdn.net/download/pbymw8iwm/90368935

前景:

这种数据集的前景还是很广阔的:

  1. 提高生产效率:利用人工智能算法进行木材表面缺陷检测,可以实现自动化和高效率的生产线,减少人力成本和生产时间。

  2. 提高质量控制水平:通过自动检测木材表面缺陷,可以减少人为因素的影响,提高产品的质量一致性和标准化程度。

  3. 降低资源浪费:及早发现和处理木材表面的缺陷,可以避免将有缺陷的木材用于生产,从而减少资源浪费和成本。

  4. 为木材行业数字化转型提供技术支持:木材表面缺陷检测数据集的建立和应用可以促进木材行业向数字化、智能化方向发展,提升行业竞争力和创新能力。

相关推荐
要努力啊啊啊1 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx1 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
zzc9212 天前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
学技术的大胜嗷2 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶3 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币3 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580083 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter12 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200513 天前
yolov11转ncnn
yolo·ncnn
YueiL13 天前
ROS 2 中 Astra Pro 相机与 YOLOv5 检测功能编译启动全记录
yolo·ros2