木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

数据集说明

木材表面缺陷检测数据集是用于训练和验证人工智能算法,以帮助自动识别和检测木材表面的缺陷,如裂纹、疤痕、孔洞等。这对于木材行业非常重要,可以提高生产过程的效率和质量控制水平。

本文提供的木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

标注信息:

主要有三个标签: matsong ,matmuc,sau,matchet

训练模型验证:

对应的标签信息如下:

{

"predictions": [

{

"x": 314.5,

"y": 417.5,

"width": 81,

"height": 117,

"confidence": 0.908,

"class": "matchet",

"class_id": 0,

"detection_id": "d7caf043-e667-4232-9a1a-02fa2b8c1966"

},

{

"x": 319,

"y": 340.5,

"width": 72,

"height": 43,

"confidence": 0.797,

"class": "sau",

"class_id": 3,

"detection_id": "9128bbd1-e013-46c3-850a-89e860235f5d"

},

{

"x": 927.5,

"y": 305,

"width": 57,

"height": 110,

"confidence": 0.743,

"class": "matmuc",

"class_id": 1,

"detection_id": "506d0a80-917a-4f56-bef4-f773418152ea"

}

]

}

标签信息如下:

{

"predictions": [

{

"x": 848,

"y": 490.5,

"width": 208,

"height": 225,

"confidence": 0.876,

"class": "sau",

"class_id": 3,

"detection_id": "39d0d646-9bfb-4c67-ae82-81057f55c51a"

},

{

"x": 478,

"y": 321.5,

"width": 126,

"height": 51,

"confidence": 0.814,

"class": "sau",

"class_id": 3,

"detection_id": "23c002bc-8193-46b6-9c73-bbdf197bab11"

}

]

}

数据集下载地址:

yolov11:https://download.csdn.net/download/pbymw8iwm/90368938

yolov9:https://download.csdn.net/download/pbymw8iwm/90368936

yolov8:https://download.csdn.net/download/pbymw8iwm/90368933

yolov7:https://download.csdn.net/download/pbymw8iwm/90368932

yolov5:https://download.csdn.net/download/pbymw8iwm/90368934

darknet:https://download.csdn.net/download/pbymw8iwm/90368937

coco json:https://download.csdn.net/download/pbymw8iwm/90368931

pasical voc xml: https://download.csdn.net/download/pbymw8iwm/90368935

前景:

这种数据集的前景还是很广阔的:

  1. 提高生产效率:利用人工智能算法进行木材表面缺陷检测,可以实现自动化和高效率的生产线,减少人力成本和生产时间。

  2. 提高质量控制水平:通过自动检测木材表面缺陷,可以减少人为因素的影响,提高产品的质量一致性和标准化程度。

  3. 降低资源浪费:及早发现和处理木材表面的缺陷,可以避免将有缺陷的木材用于生产,从而减少资源浪费和成本。

  4. 为木材行业数字化转型提供技术支持:木材表面缺陷检测数据集的建立和应用可以促进木材行业向数字化、智能化方向发展,提升行业竞争力和创新能力。

相关推荐
jay神20 小时前
基于深度学习的交通流量预测系统
人工智能·深度学习·自然语言处理·数据集·计算机毕业设计
极智视界1 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机1 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
Faker66363aaa2 天前
基于YOLOv8-P2的稻田杂草智能分割与识别系统
yolo
极智视界2 天前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
ASD123asfadxv2 天前
YOLOv10n-RepVit实现螺钉螺母智能检测与计数系统
yolo
你再说一遍?3642 天前
计算机视觉实训作业记录:基于 YOLOv12 的水下目标检测模型优化与实现
yolo·目标检测·计算机视觉
LASDAaaa12312 天前
红外图像中的鸟类目标检测:YOLOv5-SPDConv改进实践
yolo·目标检测·目标跟踪
Lun3866buzha2 天前
涡轮叶片表面缺陷识别与分类使用YOLOv8与特征金字塔共享卷积详解及代码实现
yolo·分类·数据挖掘
地球资源数据云2 天前
【最新更新】中国2000-2025平均值合成白天地表温度(LST)年度数据集
数据分析·数据集·遥感数据