木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

数据集说明

木材表面缺陷检测数据集是用于训练和验证人工智能算法,以帮助自动识别和检测木材表面的缺陷,如裂纹、疤痕、孔洞等。这对于木材行业非常重要,可以提高生产过程的效率和质量控制水平。

本文提供的木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%

标注信息:

主要有三个标签: matsong ,matmuc,sau,matchet

训练模型验证:

对应的标签信息如下:

{

"predictions": [

{

"x": 314.5,

"y": 417.5,

"width": 81,

"height": 117,

"confidence": 0.908,

"class": "matchet",

"class_id": 0,

"detection_id": "d7caf043-e667-4232-9a1a-02fa2b8c1966"

},

{

"x": 319,

"y": 340.5,

"width": 72,

"height": 43,

"confidence": 0.797,

"class": "sau",

"class_id": 3,

"detection_id": "9128bbd1-e013-46c3-850a-89e860235f5d"

},

{

"x": 927.5,

"y": 305,

"width": 57,

"height": 110,

"confidence": 0.743,

"class": "matmuc",

"class_id": 1,

"detection_id": "506d0a80-917a-4f56-bef4-f773418152ea"

}

]

}

标签信息如下:

{

"predictions": [

{

"x": 848,

"y": 490.5,

"width": 208,

"height": 225,

"confidence": 0.876,

"class": "sau",

"class_id": 3,

"detection_id": "39d0d646-9bfb-4c67-ae82-81057f55c51a"

},

{

"x": 478,

"y": 321.5,

"width": 126,

"height": 51,

"confidence": 0.814,

"class": "sau",

"class_id": 3,

"detection_id": "23c002bc-8193-46b6-9c73-bbdf197bab11"

}

]

}

数据集下载地址:

yolov11:https://download.csdn.net/download/pbymw8iwm/90368938

yolov9:https://download.csdn.net/download/pbymw8iwm/90368936

yolov8:https://download.csdn.net/download/pbymw8iwm/90368933

yolov7:https://download.csdn.net/download/pbymw8iwm/90368932

yolov5:https://download.csdn.net/download/pbymw8iwm/90368934

darknet:https://download.csdn.net/download/pbymw8iwm/90368937

coco json:https://download.csdn.net/download/pbymw8iwm/90368931

pasical voc xml: https://download.csdn.net/download/pbymw8iwm/90368935

前景:

这种数据集的前景还是很广阔的:

  1. 提高生产效率:利用人工智能算法进行木材表面缺陷检测,可以实现自动化和高效率的生产线,减少人力成本和生产时间。

  2. 提高质量控制水平:通过自动检测木材表面缺陷,可以减少人为因素的影响,提高产品的质量一致性和标准化程度。

  3. 降低资源浪费:及早发现和处理木材表面的缺陷,可以避免将有缺陷的木材用于生产,从而减少资源浪费和成本。

  4. 为木材行业数字化转型提供技术支持:木材表面缺陷检测数据集的建立和应用可以促进木材行业向数字化、智能化方向发展,提升行业竞争力和创新能力。

相关推荐
AI即插即用19 小时前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
AI即插即用20 小时前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
shayudiandian1 天前
YOLOv8目标检测项目实战(从训练到部署)
人工智能·yolo·目标检测
Hcoco_me2 天前
YOLO目标检测学习路线图
学习·yolo·目标检测
dotphoenix2 天前
在wsl ubuntu下安装,训练,验证,导出,部署YOLO的完整例子
yolo
paopao_wu3 天前
目标检测YOLO[03]:推理入门
人工智能·yolo·目标检测
深度学习lover4 天前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
Coovally AI模型快速验证4 天前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
hans汉斯4 天前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机
AI即插即用4 天前
即插即用系列 | 2024 SOTA LAM-YOLO : 无人机小目标检测模型
pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测·无人机