PySpark 本地开发环境搭建与实践

目录

[一、PySpark 本地开发环境搭建](#一、PySpark 本地开发环境搭建)

[(一)Windows 本地 JDK 和 Hadoop 的安装](#(一)Windows 本地 JDK 和 Hadoop 的安装)

[(二)Windows 安装 Anaconda](#(二)Windows 安装 Anaconda)

[(三)Anaconda 中安装 PySpark](#(三)Anaconda 中安装 PySpark)

[(四)Pycharm 中创建工程](#(四)Pycharm 中创建工程)

二、编写代码

(一)编写环境变量的代码

[(二)获取 SparkContext 对象](#(二)获取 SparkContext 对象)

(三)将代码模板化

完整的模板:记得给模板起个名字pyspark_local_script

三、本地开发案例

[(一)WordCount 案例](#(一)WordCount 案例)

(二)使用正则解决特殊分隔符问题

[(三)本地开发 - 读取 hdfs 上的数据](#(三)本地开发 - 读取 hdfs 上的数据)

[(四)本地开发 - 获取外部的变量](#(四)本地开发 - 获取外部的变量)

传递数据

参数设置界面

[四、Spark 程序的监控](#四、Spark 程序的监控)

[4040 界面的使用](#4040 界面的使用)

[五、local 和结果文件的数量问题](#五、local 和结果文件的数量问题)

[(一)local 模式并行度](#(一)local 模式并行度)

[(二)结果文件数量与 local 模式的关系](#(二)结果文件数量与 local 模式的关系)

六、总结



在大数据处理领域,PySpark 作为一个强大的工具,为数据科学家和开发人员提供了便捷的方式来处理大规模数据。本文将详细介绍如何在 Windows 环境下搭建 PySpark 本地开发环境,并深入探讨在这个环境下的代码编写、案例实践、程序监控以及一些常见问题的处理,帮助读者快速上手 PySpark 本地开发。

一、PySpark 本地开发环境搭建

(一)Windows 本地 JDK 和 Hadoop 的安装

JDK(Java Development Kit)是 Java 开发的基础,而 Hadoop 是处理大数据的重要框架。在 Windows 上安装它们是后续搭建 PySpark 环境的第一步。安装过程需要注意选择合适的版本,并按照安装向导进行操作,确保安装路径等设置正确。

JDK安装配置教程_jdk64位安装-CSDN博客

Windows 系统安装 Hadoop 详细教程-CSDN博客

(二)Windows 安装 Anaconda

Anaconda 是一个开源的 Python 发行版本,它包含了 conda、Python 等 180 多个科学包及其依赖项。右键以管理员身份运行安装程序,默认安装到了 ProgramData 文件夹(这是一个非空文件夹)。在安装过程中,要注意各种安装选项,确保安装顺利进行。Anaconda 的安装为后续在其环境中安装 PySpark 等相关包提供了基础。

通过网盘分享Miniconda3的:Miniconda3-py38_4.11.0-Windows-x86_64.exe

(三)Anaconda 中安装 PySpark

在命令提示符(cmd)中进行操作。在安装过程中,如果遇到需要输入 y 或者 n 的情况,输入 y。安装完成后,可以通过 conda list 或者 pip list 检查是否包含 py4jpyspark 两个包。PySpark 的安装路径在 $ANACONDA_HOME/Lib/site - packages。这里需要强调的是,这实际上是在本地安装一个 Spark 软件,如果没有 Spark 环境,仅仅安装了 PySpark 是无法运行 Spark 代码的。

(四)Pycharm 中创建工程

  1. 选择 Conda :在 Pycharm 中创建工程时,选择 Conda。直接点确定即可。因为 Anaconda 包含了 Python 并且可以安装各种环境,比如 pyspark,通过这种关联,Pycharm 可以使用 Anaconda 中的工具。
  2. 解决识别问题 :如果 Anaconda 没有安装在 C 盘,可能会出现识别不了的情况。此时需要手动选择。
  3. 检查安装包中是否有相关软件,并验证选择的解释器是否正确。
  4. 创建文件夹,为后续代码编写做好准备。

main :用于存放每天开发的一些代码文件

resources :用于存放程序中需要用到的配置文件

datas :用于存放每天用到的一些数据文件

test :用于存放测试时的一些代码文件

二、编写代码

(一)编写环境变量的代码

环境变量的设置对于 PySpark 程序的运行至关重要。它确保程序能够找到所需的资源和配置。在代码中,要正确地设置与 Spark 相关的环境变量,包括 Spark 的安装路径、配置文件路径等。

python 复制代码
import os

if __name__ == '__main__':
    # 你自己的JDK路径
    os.environ['JAVA_HOME'] = 'D:/Program Files/Java/jdk1.8.0_271'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

(二)获取 SparkContext 对象

SparkContext 是 Spark 中的核心类,任何一个 Spark 的程序都必须包含一个 SparkContext 类的对象。通过获取这个对象,我们可以进一步构建和执行 Spark 任务。例如:

python 复制代码
import os
# 导入pyspark模块
from pyspark import SparkContext,SparkConf

if __name__ == '__main__':
	# 配置环境
	os.environ['JAVA_HOME'] = 'D:/Program Files/Java/jdk1.8.0_271'
	# 配置Hadoop的路径,就是前面解压的那个路径
	os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'
	# 配置base环境Python解析器的路径
	os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径
	os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

	# 获取 conf 对象
	conf = SparkConf().setMaster("local[*]").setAppName("第一个Spark程序")
	# 假如我想设置压缩
	# conf.set("spark.eventLog.compression.codec","snappy")
	# 根据配置文件,得到一个SC对象,第一个conf 是 形参的名字,第二个conf 是实参的名字
	sc = SparkContext(conf=conf)
	print(sc)


	# 使用完后,记得关闭
	sc.stop()

(三)将代码模板化

创建一个名为 pyspark_local_script 的模板,并在其中添加必要的内容。模板化代码有助于提高代码的复用性和规范性。在模板中,可以将一些常用的代码结构和函数定义好,方便在不同的项目中使用。

完整的模板:记得给模板起个名字pyspark_local_script
python 复制代码
import os
# 导入pyspark模块
from pyspark import SparkContext,SparkConf

"""
------------------------------------------
  Description : TODO:
  SourceFile : ${NAME}
  Author  : ${USER}
  Date  : ${DATE}
-------------------------------------------
"""

if __name__ == '__main__':
	# 配置环境
	os.environ['JAVA_HOME'] = 'D:/Program Files/Java/jdk1.8.0_271'
	# 配置Hadoop的路径,就是前面解压的那个路径
	os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'
	# 配置base环境Python解析器的路径
	os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径
	os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

	# 获取 conf 对象
	conf = SparkConf().setMaster("local[*]").setAppName("第一个Spark程序")
	# 假如我想设置压缩
	# conf.set("spark.eventLog.compression.codec","snappy")
	# 根据配置文件,得到一个SC对象,第一个conf 是 形参的名字,第二个conf 是实参的名字
	sc = SparkContext(conf=conf)
	print(sc)


	# 使用完后,记得关闭
	sc.stop()

模板的使用:

三、本地开发案例

(一)WordCount 案例

代码编写:这是一个经典的大数据处理案例。通过读取文本文件,将其中的单词进行拆分、计数。代码实现如下:

python 复制代码
import os
# 导入pyspark模块
from pyspark import SparkContext, SparkConf

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'C:/Program Files/java/jdk1.8.0_181'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'D:/Linux/hadoop/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

    # 获取 conf 对象
    # setMaster  按照什么模式运行,local  bigdata01:7077  yarn
    #  local[2]  使用2核CPU   * 你本地资源有多少核就用多少核
    #  appName 任务的名字
    conf = SparkConf().setMaster("local[*]").setAppName("第一个Spark程序")
    # 假如我想设置压缩
    # conf.set("spark.eventLog.compression.codec","snappy")
    # 根据配置文件,得到一个SC对象,第一个conf 是 形参的名字,第二个conf 是实参的名字
    sc = SparkContext(conf=conf)
    print(sc)

    fileRdd = sc.textFile("../../datas/WordCount/data.txt")
    rsRdd = fileRdd.filter(lambda x: len(x) > 0) \
        .flatMap(lambda line: line.strip().split()) \
        .map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b)

    rsRdd.saveAsTextFile("../datas/WordCount/result2")

    # 使用完后,记得关闭
    sc.stop()
    # 注意,在cmd窗口中执行spark-submit命令时,需要将以下路径添加到环境变量中

建议安装一个工具psutil,如果不想看到就在 Python解释器中安装:pip install psutil

查看运行结果 :运行代码后,可以在指定的输出路径中查看结果文件。结果文件中包含了每个单词及其出现的次数。

常见的其他错误:

(二)使用正则解决特殊分隔符问题

在实际数据处理中,可能会遇到特殊的分隔符。这时可以使用正则表达式来改造 WordCount 代码。例如,如果数据是用特定的非空格字符分隔的,可以通过修改 flatMap 函数中的分隔逻辑,使用正则表达式来正确拆分单词。

python 复制代码
import os
import re

# 导入pyspark模块
from pyspark import SparkContext, SparkConf

if __name__ == '__main__':
# 配置环境
os.environ['JAVA_HOME'] = 'C:/Program Files/java/jdk1.8.0_181'
# 配置Hadoop的路径,就是前面解压的那个路径
os.environ['HADOOP_HOME'] = 'D:/Linux/hadoop/hadoop-3.3.1'
# 配置base环境Python解析器的路径
os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe' # 配置base环境Python解析器的路径
os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

# 获取 conf 对象
# setMaster 按照什么模式运行,local bigdata01:7077 yarn
# local[2] 使用2核CPU * 你本地资源有多少核就用多少核
# appName 任务的名字
conf = SparkConf().setMaster("local[*]").setAppName("")
# 假如我想设置压缩
# conf.set("spark.eventLog.compression.codec","snappy")
# 根据配置文件,得到一个SC对象,第一个conf 是 形参的名字,第二个conf 是实参的名字
sc = SparkContext(conf=conf)
print(sc)

fileRdd = sc.textFile("../../datas/WordCount/data.txt")
rsRdd = fileRdd.filter(lambda x: len(x) > 0) \
.flatMap(lambda line: re.split("\\s+", line.strip())) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda sum, num: sum+num)

rsRdd.saveAsTextFile("../datas/WordCount/result3")

# 使用完后,记得关闭
sc.stop()

(三)本地开发 - 读取 hdfs 上的数据

在 Windows 环境下,用户通常没有权限访问 hdfs 文件系统。这需要进行一些额外的配置,比如配置 Hadoop 的相关权限,或者通过一些代理工具来实现访问。在代码中,要正确设置 Hadoop 的配置参数,以确保能够读取 hdfs 上的数据。

python 复制代码
	fileRdd = sc.textFile("hdfs://bigdata01:9820/spark/wordcount/input/*")
	rsRdd = fileRdd.filter(lambda line: len(line.strip()) > 0 ).flatMap(lambda line: re.split("\\s+",line.strip())).map(lambda word: (word,1)).reduceByKey(lambda sum,num : sum+num)
	rsRdd.saveAsTextFile("hdfs://bigdata01:9820/spark/wordcount/output4")

以上这个说明,windows用户没有权限访问hdfs文件系统

申明当前以root用户的身份来执行操作

os.environ['HADOOP_USER_NAME'] = 'root'

完整代码

python 复制代码
import os
import re

# 导入pyspark模块
from pyspark import SparkContext, SparkConf

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'C:/Program Files/java/jdk1.8.0_181'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'D:/Linux/hadoop/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'

    # 申明当前以root用户的身份来执行操作
    os.environ['HADOOP_USER_NAME'] = 'root'

    conf = SparkConf().setMaster("local[*]").setAppName("")
    sc = SparkContext(conf=conf)

    fileRdd = sc.textFile("hdfs://bigdata01:9820/spark/wordcount/input/*")
    rsRdd = fileRdd.filter(lambda line: len(line.strip()) > 0) \
        .flatMap(lambda line: re.split("\\s+", line.strip())) \
        .map(lambda word: (word, 1))\
        .reduceByKey(lambda sum, num: sum + num)
    rsRdd.saveAsTextFile("hdfs://bigdata01:9820/spark/wordcount/output4")

    # 使用完后,记得关闭
    sc.stop()

运行

(四)本地开发 - 获取外部的变量

类似于 Java 中的 String[] args,在 PySpark 中也可以获取外部变量。可以通过命令行参数传递的方式来实现。例如,在运行 pyspark 脚本时,可以使用 spark - sumit xxxxx.py 参数 1, 参数 2 的形式传递参数。在代码中,需要对这些参数进行解析和使用。

python 复制代码
import os
import re
import sys

# 导入pyspark模块
from pyspark import SparkContext, SparkConf


if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'C:/Program Files/java/jdk1.8.0_181'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'D:/Linux/hadoop/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'
    # 申明当前以root用户的身份来执行操作
    os.environ['HADOOP_USER_NAME'] = 'root'

    # 获取 conf 对象
    conf = SparkConf().setMaster("local[*]").setAppName("")
    # 根据配置文件,得到一个SC对象,第一个conf 是 形参的名字,第二个conf 是实参的名字
    sc = SparkContext(conf=conf)
    print(sc)

    # 获取第一个参数
    fileRdd = sc.textFile(sys.argv[1])
    rsRdd = fileRdd.filter(lambda line: len(line.strip()) > 0) \
        .flatMap(lambda line: re.split("\\s+", line.strip())) \
        .map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, num: sum + num)
    # 获取第二个参数
    rsRdd.saveAsTextFile(sys.argv[2])

    # 使用完后,记得关闭
    sc.stop()
传递数据

参数一: hdfs://bigdata01:9820/spark/wordcount/input/*

参数二: hdfs://bigdata01:9820/spark/wordcount/output4

参数设置界面

四、Spark 程序的监控

4040 界面的使用

因为是本地的程序,所以可以通过访问地址 http://localhost:4040 来监控程序。每个 Spark 程序都有一个对应的 4040 界面。这个界面提供了丰富的信息:

  1. RDD 相关信息 :每个黑点表示一个 RDD,每个矩形框中的 RDD 的转换都是在内存中完成的,曲线代表经过了 Shuffle,灰色代表没有执行(因为之前执行过)。
  2. 进程信息 :显示当前这个程序的运行进程的信息。每个 Spark 程序都由两种进程组成:一个 Driver 和多个 Executors。Driver 进程负责解析程序,构建 DAG 图,构建 Stage,构建、调度、监控 Task 任务的运行;Executor 进程负责运行程序中的所有 Task 任务。
  3. 存储信息:Storage 部分显示当前这个程序在内存缓存的数据信息。
  4. 配置信息:Environment 显示当前这个程序所有的配置信息。

五、local 和结果文件的数量问题

(一)local 模式并行度

  1. local:使用本地模式,并行度是 1。
  2. local[3]:使用本地模式,并行度是 3,这个并行度最好和 CPU 的核数一致,一般并行度 <= CPU 的核数。
  3. local[*]:并行度 = CPU 的核数。

(二)结果文件数量与 local 模式的关系

文件的结果经常是 2 个文件,这跟分区数有关系,跟 local = N 也有一定的关系。其规律是 min(N,2),例如如果是 local [1],最后的文件数量就是 1。

如果在 local 模式下,想要结果文件是 10,可以使用 sc.textFile("../datas/wordcount/data.txt",10) 的方式来设置分区数。

六、总结

本文详细介绍了 PySpark 本地开发环境的搭建过程,包括 JDK、Hadoop、Anaconda、PySpark 的安装以及 Pycharm 工程的创建。同时,深入讲解了代码编写、本地开发案例(如 WordCount、处理特殊分隔符、读取 hdfs 数据、获取外部变量)、Spark 程序的监控和 local 模式下结果文件数量问题等内容。通过掌握这些知识和技能,读者可以在 Windows 本地环境中高效地进行 PySpark 开发,处理大规模数据,解决实际业务中的数据分析和处理问题。希望本文能为读者在 PySpark 学习和实践的道路上提供有力的帮助,让读者能够更好地利用这个强大的工具来挖掘数据的价值。

相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
lucky_syq5 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
goTsHgo10 小时前
在 Spark 上实现 Graph Embedding
大数据·spark·embedding
程序猿小柒10 小时前
【Spark】Spark SQL执行计划-精简版
大数据·sql·spark
隔着天花板看星星10 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
遥感之家1 天前
GEE+本地XGboot分类
conda
lucky_syq2 天前
Spark和Hive的区别
大数据·hive·spark
隔着天花板看星星2 天前
Spark-Streaming receiver模式源码解析
大数据·分布式·spark
Data跳动3 天前
Spark 运行时对哪些数据会做缓存?
java·缓存·spark