hadoop_yarn-site.xml

hadoop3.2.3的高可用集群yarn-site.xml配置实例

xml 复制代码
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>


	<property>
	    <!-- 指定Resource Manager的主机名,这里将Resource Manager的主机名设置为"master" -->
	    <name>yarn.resourcemanager.hostname</name>
	    <value>master</value>
	</property>
	
	<property>
		<!-- 启用Resource Manager的高可用性(HA)功能 -->
 		<name>yarn.resourcemanager.ha.enabled</name>
		<value>true</value>
    </property>
	
	<property>
		<!-- 指定用于HA的ZooKeeper集群的地址,这里使用了三个Kafka节点作为ZooKeeper服务,端口为2181 -->
    	<name>ha.zookeeper.quorum</name>
   		<value>kafka-1:2181,kafka-2:2181,kafka-3:2181</value>
	</property>
	
	<property>
		<!-- 指定YARN集群的ID,用于区分不同的YARN集群,这里设置为"myyarn" -->
		<name>yarn.resourcemanager.cluster-id</name>
		<value>myyarn</value>
	</property>
		
	<property>
		<!-- 指定YARN集群中Resource Manager的ID列表,这里有两个Resource Manager,分别为rm1和rm2 -->
		<name>yarn.resourcemanager.ha.rm-ids</name>
		<value>rm1,rm2</value>
	</property>
	
	<property>
		<!-- 指定ID为rm1的Resource Manager的主机名,这里设置为"namenode-1" -->
		<name>yarn.resourcemanager.hostname.rm1</name>
		<value>namenode-1</value>
	</property>
	
	<property>
		<!-- 指定ID为rm2的Resource Manager的主机名,这里设置为"namenode-2" -->
		<name>yarn.resourcemanager.hostname.rm2</name>
		<value>namenode-2</value>
	</property>
	
	<property>
		<!-- 指定ID为rm1的Resource Manager的Web应用地址,这里设置为"namenode-1:8088" -->
		<name>yarn.resourcemanager.webapp.address.rm1</name>
		<value>namenode-1:8088</value>
    </property>
	
	<property>
		<!-- 指定ID为rm2的Resource Manager的Web应用地址,这里设置为"namenode-2:8088" -->
		<name>yarn.resourcemanager.webapp.address.rm2</name>
		<value>namenode-2:8088</value>
	</property>
	
	<property>
		<!-- 指定YARN ResourceManager使用的ZooKeeper集群地址 -->
		<name>yarn.resourcemanager.zk-address</name>
		<value>kafka-1:2181,kafka-2:2181,kafka-3:2181</value>
	</property>
	
	<property>
		<!-- 指定Hadoop集群使用的ZooKeeper集群地址,这里与YARN使用了相同的ZooKeeper集群 -->
		<name>hadoop.zk.address</name>
		<value>kafka-1:2181,kafka-2:2181,kafka-3:2181</value>
	</property>

  <property>
		<!-- 指定NodeManager上运行的辅助服务列表,这里包括MapReduce的shuffle服务和Spark的shuffle服务 -->
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle,spark_shuffle</value>
  </property>
  	
	<property>
		<!-- 启用日志聚合功能,使得YARN能够收集并聚合各个节点的日志,方便后续查看和分析 -->
		<name>yarn.log-aggregation-enable</name>
		<value>true</value>
  </property>

	<property>
		<!-- 指定日志服务器的URL,用于访问聚合后的日志 -->
		<name>yarn.log.server.url</name>
		<value>http://datanode-7:19888/jobhistory/logs</value>
	</property>

	<property>
		<!-- 禁用NodeManager对物理内存的检查,避免因为内存不足而导致任务失败 -->
		<name>yarn.nodemanager.pmem-check-enabled</name>
		<value>false</value>
    </property>
	
	<property>
		<!-- 禁用NodeManager对虚拟内存的检查,同样是为了避免因为内存不足而导致任务失败 -->
		<name>yarn.nodemanager.vmem-check-enabled</name>
		<value>false</value>
	</property>

	<property>
		<!-- 指定YARN ResourceManager的地址,客户端和NodeManager需要通过这个地址与ResourceManager通信 -->
  		<name>yarn.resourcemanager.address</name>
  		<value>namenode-1:8032</value>
	</property>
	
	<property>
		<!-- 指定YARN ResourceTracker的地址,NodeManager需要通过这个地址向ResourceTracker报告资源使用情况 -->
  		<name>yarn.resourcemanager.resource-tracker.address</name>
  		<value>namenode-1:8031</value>
	</property>
	
	<property>
		<!-- 指定ID为rm1的ResourceManager的Scheduler地址,用于任务调度 -->
		<name>yarn.resourcemanager.scheduler.address.rm1</name>
		<value>namenode-1:8030</value>
    </property>
	
	<property>
		<!-- 指定ID为rm2的ResourceManager的Scheduler地址,同样用于任务调度 -->
		<name>yarn.resourcemanager.scheduler.address.rm2</name>
		<value>namenode-2:8030</value>
	</property>

	<property>
		<!-- 指定Spark shuffle服务的端口号,NodeManager上的Spark shuffle服务会监听这个端口以接收来自其他节点的shuffle数据 -->
		<name>spark.shuffle.service.port</name>
		<value>7337</value>
	</property>
	
	<property>
		<!-- 指定Spark shuffle服务在YARN NodeManager上的实现类 -->
		<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
		<value>org.apache.spark.network.yarn.YarnShuffleService</value>
	</property>

	<property>
		<!-- 指定YARN NodeManager可用的物理内存总量(以MB为单位) -->
		<name>yarn.nodemanager.resource.memory-mb</name>
		<value>98304</value>
  	</property>
	
  	<property>
		<!-- 指定YARN Scheduler为单个容器分配的最小内存量(以MB为单位) -->
		<name>yarn.scheduler.minimum-allocation-mb</name>
		<value>1024</value>
  	</property>
	
	<property>
		<!-- 指定YARN Scheduler在增加容器内存分配时的增量(以MB为单位) -->
		<name>yarn.scheduler.increment-allocation-mb</name>
		<value>1024</value>
	</property>
	
  	<property>
		<!-- 指定YARN Scheduler为单个容器分配的最大内存量(以MB为单位) -->
		<name>yarn.scheduler.maximum-allocation-mb</name>
		<value>98304</value>
  	</property>

  	<property>
		<!-- 指定MapReduce ApplicationMaster(AM)所需的内存资源量(以MB为单位) -->
		<name>yarn.app.mapreduce.am.resource.mb</name>
		<value>18432</value>
  	</property>
	
  	<property>
		<!-- 指定MapReduce ApplicationMaster(AM)启动时的JVM参数,这里设置了最大堆内存为14745MB -->
		<name>yarn.app.mapreduce.am.command-opts</name>
		<value>-Xmx14745m</value>
  	</property>

  	<property>
		<!-- 指定YARN NodeManager可用的CPU虚拟核心数 -->
  		<name>yarn.nodemanager.resource.cpu-vcores</name>
  		<value>48</value>
  	</property>
	
	<property>
		<!-- 指定YARN Scheduler为单个容器分配的最小CPU虚拟核心数 -->
		<name>yarn.scheduler.minimum-allocation-vcores</name>
		<value>1</value>
	</property>
	
	<property>
		<!-- 指定YARN Scheduler在增加容器CPU分配时的增量(以虚拟核心为单位) -->
		<name>yarn.scheduler.increment-allocation-vcores</name>
		<value>1</value>
	</property>
	
  	<property>
		<!-- 指定YARN Scheduler为单个容器分配的最大CPU虚拟核心数 -->
  		<name>yarn.scheduler.maximum-allocation-vcores</name>
  		<value>48</value>
  	</property>

	<property>  
		<!-- 指定一个文件路径,该文件包含要排除的主机列表。这些主机将不会被用于运行MapReduce任务。 -->
		<name>mapred.hosts.exclude</name>  
		<value>/home/hadoop/hadoop/etc/hadoop/yarn.exclude</value>   
	</property>
	
	<property>
		<!-- 这个配置项设置了YARN应用程序运行时所需的类路径,包括Hadoop各个组件的库和配置文件。 -->
		<name>yarn.application.classpath</name>
		<value>/home/hadoop/hadoop-3.2.3/etc/hadoop, 					<!-- YARN应用程序的类路径配置,包括Hadoop配置文件的路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/common/lib/*, 	<!-- Hadoop通用库的依赖jar包路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/common/*, 		<!-- Hadoop通用库的路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/hdfs/lib/*,		<!-- HDFS库的依赖jar包路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/hdfs/*, 			<!-- HDFS库的路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/mapreduce/lib/*, 	<!-- MapReduce库的依赖jar包路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/mapreduce/*, 		<!-- MapReduce库的路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/yarn/lib/*, 		<!-- YARN库的依赖jar包路径 -->
			   /home/hadoop/hadoop-3.2.3/share/hadoop/yarn/* 			<!-- YARN库的路径 -->
		</value>
 	 </property>

</configuration>
相关推荐
白总Server4 分钟前
Nginx 中间件
大数据·linux·运维·服务器·nginx·bash·web
咨询1871506512729 分钟前
高企复审奖补!2025年合肥市高新技术企业重新认定奖励补贴政策及申报条件
大数据·人工智能·区块链
Guheyunyi41 分钟前
智能照明系统:照亮智慧生活的多重价值
大数据·前端·人工智能·物联网·信息可视化·生活
用户199701080181 小时前
深入解析淘宝商品详情 API 接口:功能、使用与实践指南
大数据·爬虫·数据挖掘
ONEYAC唯样1 小时前
“在中国,为中国” 英飞凌汽车业务正式发布中国本土化战略
大数据·人工智能
mozun20201 小时前
产业观察:哈工大机器人公司2025.4.22
大数据·人工智能·机器人·创业创新·哈尔滨·名校
Apache Flink2 小时前
京东物流基于Flink & StarRocks的湖仓建设实践
java·大数据·flink
董可伦2 小时前
Flink 源码编译
大数据·flink·源码
努力犯错2 小时前
昆仑万维开源SkyReels-V2,解锁无限时长电影级创作,总分83.9%登顶V-Bench榜单
大数据·人工智能·语言模型·开源
IT成长日记3 小时前
【Hive入门】Hive分区与分桶深度解析:优化查询性能的关键技术
数据仓库·hive·hadoop·分区·分桶