显存占用 显存测试

目录

显存测试

显存占用示例

一个模型多卡占用


显存测试

python 复制代码
import torch

# 计算张量的大小(例如:每个 float 占用 4 字节)
# 40GB = 40 * 1024 * 1024 * 1024 字节
# 每个 float 4 字节,因此需要的 float 数量为 (40 * 1024 * 1024 * 1024) / 4
num_elements = (40 * 1024 * 1024 * 1024) // 4

# 创建一个在 GPU 上的张量
tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')

print(tensor)

显存占用示例

42G和62G显存

python 复制代码
import time

import torch

# 设置张量的大小
num_elements = (10 * 1024 * 1024 * 1024) // 4  # 42GB 大小
# num_elements = (15 * 1024 * 1024 * 1024) // 4  # 62GB 大小

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')
tensor_b = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')

# 创建一个用于存储结果的张量
# result_tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')
index=0
while True:
    result_tensor=tensor_a + tensor_b
    # tensor_a + tensor_b
    time.sleep(0.01)
    index+=1
    print(index)

一个模型多卡占用

python 复制代码
import time

import torch
import torch.nn as nn

# 设置张量的大小
num_elements = (6 * 1024 * 1024 * 1024) // 4  # 40GB 大小

# 确保有两个可用的 GPU
if torch.cuda.device_count() < 2:
    raise RuntimeError("至少需要两块 GPU")

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')
tensor_b = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')

# 创建一个用于存储结果的张量
result_tensor = torch.empty(num_elements , dtype=torch.float32, device='cuda:1')

class AddModel(nn.Module):
    def forward(self, tensor_a, tensor_b):
        return tensor_a + tensor_b

# 实例化模型并使用 DataParallel
model = AddModel().cuda()
model = nn.DataParallel(model)

index=0
# 不断相加的循环
while True:
    # 使用 DataParallel 进行加法
    result_tensor = model(tensor_a, tensor_b)

    # 将结果存储在第一个 GPU 上
    result_tensor = result_tensor.to('cuda:1')

    time.sleep(0.01)
    index += 1
    print(index)
相关推荐
用户27784491049932 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
JavaEdge在掘金4 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程5555 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
老歌老听老掉牙5 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀10155 小时前
Python入门(7):模块
python
无名之逆5 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙5 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
Listennnn7 小时前
优雅的理解神经网络中的“分段线性单元”,解剖前向和反向传播
人工智能·深度学习·神经网络