显存占用 显存测试

目录

显存测试

显存占用示例

一个模型多卡占用


显存测试

python 复制代码
import torch

# 计算张量的大小(例如:每个 float 占用 4 字节)
# 40GB = 40 * 1024 * 1024 * 1024 字节
# 每个 float 4 字节,因此需要的 float 数量为 (40 * 1024 * 1024 * 1024) / 4
num_elements = (40 * 1024 * 1024 * 1024) // 4

# 创建一个在 GPU 上的张量
tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')

print(tensor)

显存占用示例

42G和62G显存

python 复制代码
import time

import torch

# 设置张量的大小
num_elements = (10 * 1024 * 1024 * 1024) // 4  # 42GB 大小
# num_elements = (15 * 1024 * 1024 * 1024) // 4  # 62GB 大小

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')
tensor_b = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')

# 创建一个用于存储结果的张量
# result_tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')
index=0
while True:
    result_tensor=tensor_a + tensor_b
    # tensor_a + tensor_b
    time.sleep(0.01)
    index+=1
    print(index)

一个模型多卡占用

python 复制代码
import time

import torch
import torch.nn as nn

# 设置张量的大小
num_elements = (6 * 1024 * 1024 * 1024) // 4  # 40GB 大小

# 确保有两个可用的 GPU
if torch.cuda.device_count() < 2:
    raise RuntimeError("至少需要两块 GPU")

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')
tensor_b = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')

# 创建一个用于存储结果的张量
result_tensor = torch.empty(num_elements , dtype=torch.float32, device='cuda:1')

class AddModel(nn.Module):
    def forward(self, tensor_a, tensor_b):
        return tensor_a + tensor_b

# 实例化模型并使用 DataParallel
model = AddModel().cuda()
model = nn.DataParallel(model)

index=0
# 不断相加的循环
while True:
    # 使用 DataParallel 进行加法
    result_tensor = model(tensor_a, tensor_b)

    # 将结果存储在第一个 GPU 上
    result_tensor = result_tensor.to('cuda:1')

    time.sleep(0.01)
    index += 1
    print(index)
相关推荐
姓学名生1 分钟前
李沐vscode配置+github管理+FFmpeg视频搬运+百度API添加翻译字幕
vscode·python·深度学习·ffmpeg·github·视频
AI科技大本营5 分钟前
Anthropic四大专家“会诊”:实现深度思考不一定需要多智能体,AI完美对齐比失控更可怕!...
人工智能·深度学习
Damon小智7 分钟前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow
黑客-雨11 分钟前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
孤独且没人爱的纸鹤25 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
l1x1n029 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
Galerkin码农选手39 分钟前
寒武纪使用cnnl库函数实现卷积算子
pytorch
是Dream呀1 小时前
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
python·神经网络·迁移学习
小林熬夜学编程1 小时前
【Python】第三弹---编程基础进阶:掌握输入输出与运算符的全面指南
开发语言·python·算法
小深ai硬件分享2 小时前
Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
服务器·人工智能·深度学习