显存占用 显存测试

目录

显存测试

显存占用示例

一个模型多卡占用


显存测试

python 复制代码
import torch

# 计算张量的大小(例如:每个 float 占用 4 字节)
# 40GB = 40 * 1024 * 1024 * 1024 字节
# 每个 float 4 字节,因此需要的 float 数量为 (40 * 1024 * 1024 * 1024) / 4
num_elements = (40 * 1024 * 1024 * 1024) // 4

# 创建一个在 GPU 上的张量
tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')

print(tensor)

显存占用示例

42G和62G显存

python 复制代码
import time

import torch

# 设置张量的大小
num_elements = (10 * 1024 * 1024 * 1024) // 4  # 42GB 大小
# num_elements = (15 * 1024 * 1024 * 1024) // 4  # 62GB 大小

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')
tensor_b = torch.rand(num_elements, dtype=torch.float32, device='cuda:3')

# 创建一个用于存储结果的张量
# result_tensor = torch.empty(num_elements, dtype=torch.float32, device='cuda')
index=0
while True:
    result_tensor=tensor_a + tensor_b
    # tensor_a + tensor_b
    time.sleep(0.01)
    index+=1
    print(index)

一个模型多卡占用

python 复制代码
import time

import torch
import torch.nn as nn

# 设置张量的大小
num_elements = (6 * 1024 * 1024 * 1024) // 4  # 40GB 大小

# 确保有两个可用的 GPU
if torch.cuda.device_count() < 2:
    raise RuntimeError("至少需要两块 GPU")

# 创建两个随机数张量,存放在 GPU 上
tensor_a = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')
tensor_b = torch.rand(num_elements , dtype=torch.float32, device='cuda:0')

# 创建一个用于存储结果的张量
result_tensor = torch.empty(num_elements , dtype=torch.float32, device='cuda:1')

class AddModel(nn.Module):
    def forward(self, tensor_a, tensor_b):
        return tensor_a + tensor_b

# 实例化模型并使用 DataParallel
model = AddModel().cuda()
model = nn.DataParallel(model)

index=0
# 不断相加的循环
while True:
    # 使用 DataParallel 进行加法
    result_tensor = model(tensor_a, tensor_b)

    # 将结果存储在第一个 GPU 上
    result_tensor = result_tensor.to('cuda:1')

    time.sleep(0.01)
    index += 1
    print(index)
相关推荐
paixiaoxin几秒前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
Dream_Snowar12 分钟前
速通Python 第四节——函数
开发语言·python·算法
西猫雷婶14 分钟前
python学opencv|读取图像(十四)BGR图像和HSV图像通道拆分
开发语言·python·opencv
weixin_5152024923 分钟前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
汪洪墩1 小时前
【Mars3d】设置backgroundImage、map.scene.skyBox、backgroundImage来回切换
开发语言·javascript·python·ecmascript·webgl·cesium
吕小明么2 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
程序员shen1616112 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
人人人人一样一样2 小时前
作业Python
python
CSBLOG3 小时前
深度学习试题及答案解析(一)
人工智能·深度学习