【计算机视觉基础】卷积

卷积是什么?

卷积怎么操作的?

为什么会形成特征提取?

1*1卷积核为什么可以整理通道数?

这篇文章将会解决这些问题------

1 卷积是什么?

提取特征需要两个矩阵,一张是原图,一个是卷积核。卷积就是代表卷积核的矩阵点乘表示图像的矩阵的过程,局部点乘,求和得到特征值。

2 卷积怎么操作的?

圈1表示一张rgb图片,经过四个卷积核卷积后得到四张特征图,共同组成一个新的特征图。

圈2表示另一张图(方便理解)

3 为什么会形成特征提取?

这部分这位老师讲的非常清晰明了https://www.bilibili.com/video/BV1cL4y1F7Ss?spm_id_from=333.788.videopod.sections\&vd_source=98026f4382fb1617a0f9a68127377cbb

简单来说就是一个卷积层中包含多个卷积核,每个卷积核都用来识别不同的特征,得到一个特征值,如果最后得到的特征值一样就说明它提取到的信息是一类,或者说它卷积的那块区域是这个目标对象。

4 1*1卷积核为什么可以整理通道数?

如下图所示。

优点:
通道压缩与扩展 :1x1卷积可以调整特征图的通道数,即可以通过过滤器的数量来减少或增加特征图的通道。这使得网络能够学习如何从多个通道中提取相关信息。
特征融合 :通过使用1x1卷积,网络能够对同一空间位置的多个通道之间进行加权求和,从而实现特征融合。这样不仅可以捕捉不同通道之间的关系,还可以通过加权组合得到更有判别力的特征。
非线性变换 :在1x1卷积后,可以应用非线性激活函数(如ReLU),这使得网络能够学习到更加复杂的通道间关系而不仅仅是线性组合。
效率:相较于更大的卷积核,1x1卷积计算效率高,因为它只在通道维度上进行卷积,减少了计算量,但依然保留了重要的通道信息。

在深度学习中的角色:1x1卷积在诸如Inception模块和残差网络中的应用,进一步展示了它对捕捉通道相关性的重要性。这些模块中,1x1卷积起到了桥梁的作用,使得不同的卷积层能有效地组合特征。

5 案例

两个3*3卷积核对两个rgb图像是怎么提取特征的

相关推荐
机器之心18 分钟前
DeepSeek开源新基础模型,但不是V4,而是V3.1-Base
人工智能·openai
金融小师妹25 分钟前
AI多因子模型解析:黄金涨势受阻与美联储9月降息政策预期重构
大数据·人工智能·算法
R-G-B32 分钟前
【P38 6】OpenCV Python——图片的运算(算术运算、逻辑运算)加法add、subtract减法、乘法multiply、除法divide
人工智能·python·opencv·图片的运算·图片加法add·图片subtract减法·图片乘法multiply
拖拖76541 分钟前
解读《Thyme: Think Beyond Images》——让大模型“写代码”思考图像
人工智能
双向331 小时前
模型量化大揭秘:INT8、INT4量化对推理速度和精度的影响测试
人工智能
lisuwen1161 小时前
GPT-5 上线风波深度复盘:从口碑两极到策略调整,OpenAI 的变与不变
大数据·人工智能·gpt·chatgpt
硅谷秋水1 小时前
在相机空间中落地动作:以观察为中心的视觉-语言-行动策略
机器学习·计算机视觉·语言模型·机器人
新智元1 小时前
16 岁天才少年炒掉马斯克,空降华尔街巨头!9 岁上大学,14 岁进 SpaceX
人工智能·openai
martinzh1 小时前
让AI学会"边做边想":ReAct的实战指南
人工智能
七超AI落地实操1 小时前
我用AI写Mermaid,差点被逼疯!一个连Gemini都搞不定的“史诗级”排错之旅
人工智能