【计算机视觉基础】卷积

卷积是什么?

卷积怎么操作的?

为什么会形成特征提取?

1*1卷积核为什么可以整理通道数?

这篇文章将会解决这些问题------

1 卷积是什么?

提取特征需要两个矩阵,一张是原图,一个是卷积核。卷积就是代表卷积核的矩阵点乘表示图像的矩阵的过程,局部点乘,求和得到特征值。

2 卷积怎么操作的?

圈1表示一张rgb图片,经过四个卷积核卷积后得到四张特征图,共同组成一个新的特征图。

圈2表示另一张图(方便理解)

3 为什么会形成特征提取?

这部分这位老师讲的非常清晰明了https://www.bilibili.com/video/BV1cL4y1F7Ss?spm_id_from=333.788.videopod.sections\&vd_source=98026f4382fb1617a0f9a68127377cbb

简单来说就是一个卷积层中包含多个卷积核,每个卷积核都用来识别不同的特征,得到一个特征值,如果最后得到的特征值一样就说明它提取到的信息是一类,或者说它卷积的那块区域是这个目标对象。

4 1*1卷积核为什么可以整理通道数?

如下图所示。

优点:
通道压缩与扩展 :1x1卷积可以调整特征图的通道数,即可以通过过滤器的数量来减少或增加特征图的通道。这使得网络能够学习如何从多个通道中提取相关信息。
特征融合 :通过使用1x1卷积,网络能够对同一空间位置的多个通道之间进行加权求和,从而实现特征融合。这样不仅可以捕捉不同通道之间的关系,还可以通过加权组合得到更有判别力的特征。
非线性变换 :在1x1卷积后,可以应用非线性激活函数(如ReLU),这使得网络能够学习到更加复杂的通道间关系而不仅仅是线性组合。
效率:相较于更大的卷积核,1x1卷积计算效率高,因为它只在通道维度上进行卷积,减少了计算量,但依然保留了重要的通道信息。

在深度学习中的角色:1x1卷积在诸如Inception模块和残差网络中的应用,进一步展示了它对捕捉通道相关性的重要性。这些模块中,1x1卷积起到了桥梁的作用,使得不同的卷积层能有效地组合特征。

5 案例

两个3*3卷积核对两个rgb图像是怎么提取特征的

相关推荐
Wendy14411 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰1 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索1 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7872 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny3 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子3 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA3 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥3 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng4 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习
云道轩4 小时前
使用Docker在Rocky Linux 9.5上在线部署LangFlow
linux·人工智能·docker·容器·langflow