【计算机视觉基础】卷积

卷积是什么?

卷积怎么操作的?

为什么会形成特征提取?

1*1卷积核为什么可以整理通道数?

这篇文章将会解决这些问题------

1 卷积是什么?

提取特征需要两个矩阵,一张是原图,一个是卷积核。卷积就是代表卷积核的矩阵点乘表示图像的矩阵的过程,局部点乘,求和得到特征值。

2 卷积怎么操作的?

圈1表示一张rgb图片,经过四个卷积核卷积后得到四张特征图,共同组成一个新的特征图。

圈2表示另一张图(方便理解)

3 为什么会形成特征提取?

这部分这位老师讲的非常清晰明了https://www.bilibili.com/video/BV1cL4y1F7Ss?spm_id_from=333.788.videopod.sections\&vd_source=98026f4382fb1617a0f9a68127377cbb

简单来说就是一个卷积层中包含多个卷积核,每个卷积核都用来识别不同的特征,得到一个特征值,如果最后得到的特征值一样就说明它提取到的信息是一类,或者说它卷积的那块区域是这个目标对象。

4 1*1卷积核为什么可以整理通道数?

如下图所示。

优点:
通道压缩与扩展 :1x1卷积可以调整特征图的通道数,即可以通过过滤器的数量来减少或增加特征图的通道。这使得网络能够学习如何从多个通道中提取相关信息。
特征融合 :通过使用1x1卷积,网络能够对同一空间位置的多个通道之间进行加权求和,从而实现特征融合。这样不仅可以捕捉不同通道之间的关系,还可以通过加权组合得到更有判别力的特征。
非线性变换 :在1x1卷积后,可以应用非线性激活函数(如ReLU),这使得网络能够学习到更加复杂的通道间关系而不仅仅是线性组合。
效率:相较于更大的卷积核,1x1卷积计算效率高,因为它只在通道维度上进行卷积,减少了计算量,但依然保留了重要的通道信息。

在深度学习中的角色:1x1卷积在诸如Inception模块和残差网络中的应用,进一步展示了它对捕捉通道相关性的重要性。这些模块中,1x1卷积起到了桥梁的作用,使得不同的卷积层能有效地组合特征。

5 案例

两个3*3卷积核对两个rgb图像是怎么提取特征的

相关推荐
Juicedata11 小时前
JuiceFS 企业版 5.3 特性详解:单文件系统支持超 5,000 亿文件,首次引入 RDMA
大数据·人工智能·机器学习·性能优化·开源
Piar1231sdafa11 小时前
蓝莓目标检测——改进YOLO11-C2TSSA-DYT-Mona模型实现
人工智能·目标检测·计算机视觉
愚公搬代码11 小时前
【愚公系列】《AI短视频创作一本通》002-AI引爆短视频创作革命(短视频创作者必备的能力)
人工智能
数据猿视觉11 小时前
新品上市|奢音S5耳夹耳机:3.5g无感佩戴,178.8元全场景适配
人工智能
蚁巡信息巡查系统12 小时前
网站信息发布再巡查机制怎么建立?
大数据·人工智能·数据挖掘·内容运营
AI浩12 小时前
C-RADIOv4(技术报告)
人工智能·目标检测
Purple Coder12 小时前
AI赋予超导材料预测论文初稿
人工智能
Data_Journal12 小时前
Scrapy vs. Crawlee —— 哪个更好?!
运维·人工智能·爬虫·媒体·社媒营销
云边云科技_云网融合12 小时前
AIoT智能物联网平台:架构解析与边缘应用新图景
大数据·网络·人工智能·安全
康康的AI博客12 小时前
什么是API中转服务商?如何低成本高稳定调用海量AI大模型?
人工智能·ai