【计算机视觉基础】卷积

卷积是什么?

卷积怎么操作的?

为什么会形成特征提取?

1*1卷积核为什么可以整理通道数?

这篇文章将会解决这些问题------

1 卷积是什么?

提取特征需要两个矩阵,一张是原图,一个是卷积核。卷积就是代表卷积核的矩阵点乘表示图像的矩阵的过程,局部点乘,求和得到特征值。

2 卷积怎么操作的?

圈1表示一张rgb图片,经过四个卷积核卷积后得到四张特征图,共同组成一个新的特征图。

圈2表示另一张图(方便理解)

3 为什么会形成特征提取?

这部分这位老师讲的非常清晰明了https://www.bilibili.com/video/BV1cL4y1F7Ss?spm_id_from=333.788.videopod.sections\&vd_source=98026f4382fb1617a0f9a68127377cbb

简单来说就是一个卷积层中包含多个卷积核,每个卷积核都用来识别不同的特征,得到一个特征值,如果最后得到的特征值一样就说明它提取到的信息是一类,或者说它卷积的那块区域是这个目标对象。

4 1*1卷积核为什么可以整理通道数?

如下图所示。

优点:
通道压缩与扩展 :1x1卷积可以调整特征图的通道数,即可以通过过滤器的数量来减少或增加特征图的通道。这使得网络能够学习如何从多个通道中提取相关信息。
特征融合 :通过使用1x1卷积,网络能够对同一空间位置的多个通道之间进行加权求和,从而实现特征融合。这样不仅可以捕捉不同通道之间的关系,还可以通过加权组合得到更有判别力的特征。
非线性变换 :在1x1卷积后,可以应用非线性激活函数(如ReLU),这使得网络能够学习到更加复杂的通道间关系而不仅仅是线性组合。
效率:相较于更大的卷积核,1x1卷积计算效率高,因为它只在通道维度上进行卷积,减少了计算量,但依然保留了重要的通道信息。

在深度学习中的角色:1x1卷积在诸如Inception模块和残差网络中的应用,进一步展示了它对捕捉通道相关性的重要性。这些模块中,1x1卷积起到了桥梁的作用,使得不同的卷积层能有效地组合特征。

5 案例

两个3*3卷积核对两个rgb图像是怎么提取特征的

相关推荐
_BugMan13 分钟前
【大模型】理论基础(1):函数与神经网络
人工智能·深度学习·神经网络
AI模块工坊1 小时前
CVPR 即插即用 | PConv:重新定义高效卷积,一个让模型“跑”得更快、更省的新范式
人工智能·深度学习·计算机视觉·transformer
lzjava20242 小时前
Spring AI加DeepSeek实现一个Prompt聊天机器人
人工智能·spring·prompt
fanstuck3 小时前
AI辅助数学建模有哪些优势?
人工智能·数学建模·语言模型·aigc
一只安3 小时前
从零开发AI(不依赖任何模型)
人工智能·python
11年老程序猿在线搬砖3 小时前
如何搭建自己的量化交易平台
大数据·人工智能·python·自动交易·量化交易系统
Elastic 中国社区官方博客4 小时前
Elasticsearch 开放推理 API 增加了对 Google 的 Gemini 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·googlecloud
周杰伦_Jay4 小时前
【实战|旅游知识问答RAG系统全链路解析】从配置到落地(附真实日志数据)
大数据·人工智能·分布式·机器学习·架构·旅游·1024程序员节
架构技术专栏4 小时前
大模型安全:从对齐问题到对抗性攻击的深度分析
人工智能
m0_650108244 小时前
【论文精读】TI2V-Zero:零样本图像引导的文本到视频生成技术
计算机视觉·扩散模型·零样本学习·论文精读·文本条件图像到视频生成