nvlink 训练笔记

目录

还没测试出效果


还没测试出效果

python 复制代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor

# 定义上述的大型全连接层模型
class LargeFullyConnectedModel(nn.Module):
    def __init__(self):
        super(LargeFullyConnectedModel, self).__init__()
        input_size = 10000
        hidden_size1 = 20000
        hidden_size2 = 15000
        hidden_size3 = 12000
        output_size = 5000

        self.fc1 = nn.Linear(input_size, hidden_size1)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size1, hidden_size2)
        self.relu2 = nn.ReLU()
        self.fc3 = nn.Linear(hidden_size2, hidden_size3)
        self.relu3 = nn.ReLU()
        self.fc4 = nn.Linear(hidden_size3, output_size)

    def forward(self, x):
        x = self.relu1(self.fc1(x))
        x = self.relu2(self.fc2(x))
        x = self.relu3(self.fc3(x))
        x = self.fc4(x)
        return x

# 初始化模型并准备多卡环境
devices = [0, 1]  # 指定要使用的显卡编号列表
model = LargeFullyConnectedModel()
if torch.cuda.device_count() > 1 and len(devices) > 1:
    print(f"使用 {len(devices)} 个 GPU 进行推理")
    model = nn.DataParallel(model, device_ids=devices)
else:
    print("仅使用单个 GPU 进行推理")
model.to(torch.device(f"cuda:{devices[0]}" if torch.cuda.is_available() else "cpu"))

# 模拟数据加载(这里只是示例,实际需根据你的数据进行调整)
batch_size = 32
input_size = 10000
data = torch.randn(batch_size, input_size).to(torch.device(f"cuda:{devices[0]}"))
targets = torch.randint(0, 5000, (batch_size,)).to(torch.device(f"cuda:{devices[0]}"))

# 定义推理函数
def inference():
    model.eval()
    with torch.no_grad():
        outputs = model(data)
        # 可以根据需要进行后续处理,如计算损失、准确率等
    return outputs

if __name__ == "__main__":
    inference()
相关推荐
CoovallyAIHub27 分钟前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
使一颗心免于哀伤37 分钟前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
CoovallyAIHub1 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
_落纸2 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Alice-YUE2 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha2 天前
SpringBoot
笔记·学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业