nvlink 训练笔记

目录

还没测试出效果


还没测试出效果

python 复制代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor

# 定义上述的大型全连接层模型
class LargeFullyConnectedModel(nn.Module):
    def __init__(self):
        super(LargeFullyConnectedModel, self).__init__()
        input_size = 10000
        hidden_size1 = 20000
        hidden_size2 = 15000
        hidden_size3 = 12000
        output_size = 5000

        self.fc1 = nn.Linear(input_size, hidden_size1)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size1, hidden_size2)
        self.relu2 = nn.ReLU()
        self.fc3 = nn.Linear(hidden_size2, hidden_size3)
        self.relu3 = nn.ReLU()
        self.fc4 = nn.Linear(hidden_size3, output_size)

    def forward(self, x):
        x = self.relu1(self.fc1(x))
        x = self.relu2(self.fc2(x))
        x = self.relu3(self.fc3(x))
        x = self.fc4(x)
        return x

# 初始化模型并准备多卡环境
devices = [0, 1]  # 指定要使用的显卡编号列表
model = LargeFullyConnectedModel()
if torch.cuda.device_count() > 1 and len(devices) > 1:
    print(f"使用 {len(devices)} 个 GPU 进行推理")
    model = nn.DataParallel(model, device_ids=devices)
else:
    print("仅使用单个 GPU 进行推理")
model.to(torch.device(f"cuda:{devices[0]}" if torch.cuda.is_available() else "cpu"))

# 模拟数据加载(这里只是示例,实际需根据你的数据进行调整)
batch_size = 32
input_size = 10000
data = torch.randn(batch_size, input_size).to(torch.device(f"cuda:{devices[0]}"))
targets = torch.randint(0, 5000, (batch_size,)).to(torch.device(f"cuda:{devices[0]}"))

# 定义推理函数
def inference():
    model.eval()
    with torch.no_grad():
        outputs = model(data)
        # 可以根据需要进行后续处理,如计算损失、准确率等
    return outputs

if __name__ == "__main__":
    inference()
相关推荐
FF-Studio11 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
喝过期的拉菲1 小时前
使用 Pytorch Lightning 时追踪指标和可视化指标
pytorch·可视化·lightning·指标追踪
CoovallyAIHub1 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
山野万里__1 小时前
C++与Java内存共享技术:跨平台与跨语言实现指南
android·java·c++·笔记
寻丶幽风3 小时前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
天水幼麟4 小时前
python学习笔记(深度学习)
笔记·python·学习
巴里巴气4 小时前
安装GPU版本的Pytorch
人工智能·pytorch·python
you45804 小时前
小程序学习笔记:使用 MobX 实现全局数据共享,实例创建、计算属性与 Actions 方法
笔记·学习·小程序
笑衬人心。4 小时前
初学Spring AI 笔记
人工智能·笔记·spring
UQI-LIUWJ5 小时前
计算机组成笔记:缓存替换算法
笔记·缓存