LongVU :Meta AI 的解锁长视频理解模型,利用自适应时空压缩技术彻底改变视频理解方式

Meta AI在视频理解方面取得了令人瞩目的里程碑式成就,推出了LongVU,这是一种开创性的模型,能够理解以前对人工智能系统来说具有挑战性的长视频。 研究论文 "LongVU:用于长视频语言理解的时空自适应压缩 "提出了一种革命性的方法,使人工智能能够有效地处理和理解长达几分钟甚至一小时的视频,而这在以前是无法实现的。

多模态大语言模型(MLLM)在理解和分析视频内容方面取得了可喜的进展。 然而,受限于给定的上下文长度,处理长视频仍然是一项重大挑战。 为了解决这一限制,我们提出了一种时空自适应压缩机制 LongVU,以减少视频标记的数量,同时保留长视频的视觉细节。 我们的想法是利用跨模态查询和帧间依赖关系,自适应地减少视频中的时空冗余。 具体来说,我们利用 DINOv2 特征来删除相似度高的冗余帧。 然后,我们利用文本引导的跨模态查询来选择性地减少帧特征。 此外,我们还根据帧与帧之间的时间依赖关系,对帧进行空间标记缩减。 我们的自适应压缩策略在有限的上下文长度内有效地处理了大量帧,几乎没有损失任何视觉信息。 在各种视频理解基准测试中,我们的 LongVU 始终超越现有方法,尤其是在长达一小时的视频理解任务(如 VideoMME 和 MLVU)中。 在轻量级 LLM 的情况下,我们的 LongVU 还能有效地扩展到更小的规模,并具有最先进的视频理解性能。

LongVU 架构

LongVU 的结构。 给定一个密集采样的视频帧,我们首先利用 DINOv2 去除冗余帧,然后融合 SigLIP 和 DINOv2 的剩余帧特征。 然后,我们通过跨模态查询有选择地减少视觉标记。 最后,我们基于时间依赖性进行空间标记压缩,以进一步满足 LLM 的有限上下文长度。



示例

python 复制代码
# git clone https://github.com/Vision-CAIR/LongVU
import numpy as np
import torch
from longvu.builder import load_pretrained_model
from longvu.constants import (
    DEFAULT_IMAGE_TOKEN,
    IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
    KeywordsStoppingCriteria,
    process_images,
    tokenizer_image_token,
)
from decord import cpu, VideoReader

tokenizer, model, image_processor, context_len = load_pretrained_model(
    "./checkpoints/longvu_qwen", None, "cambrian_qwen",
)

model.eval()
video_path = "./examples/video1.mp4"
qs = "Describe this video in detail"

vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
frame_indices = np.array([i for i in range(0, len(vr), round(fps),)])
video = []
for frame_index in frame_indices:
    img = vr[frame_index].asnumpy()
    video.append(img)
video = np.stack(video)
image_sizes = [video[0].shape[:2]]
video = process_images(video, image_processor, model.config)
video = [item.unsqueeze(0) for item in video]

qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates["qwen"].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=video,
        image_sizes=image_sizes,
        do_sample=False,
        temperature=0.2,
        max_new_tokens=128,
        use_cache=True,
        stopping_criteria=[stopping_criteria],
    )
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

Github:https://github.com/Vision-CAIR/LongVU

如何 24GB VRAM 运行

https://github.com/Vision-CAIR/LongVU/issues/6

python 复制代码
# git clone https://github.com/Vision-CAIR/LongVU
import numpy as np
import torch
from longvu.builder import load_pretrained_model
from longvu.constants import (
    DEFAULT_IMAGE_TOKEN,
    IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
    KeywordsStoppingCriteria,
    process_images,
    tokenizer_image_token,
)
from decord import cpu, VideoReader

tokenizer, model, image_processor, context_len = load_pretrained_model(
    "Vision-CAIR/LongVU_Qwen2_7B", 
    model_base=None,
    model_name="cambrian_qwen",
    device="cuda:0"
)

model.eval()
video_path = "./examples/video1.mp4"
qs = "Describe this video in detail"

vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
# frame_indices = np.array([i for i in range(0, len(vr), round(fps),)])
num_frames = 1000 if len(vr) > 1000 else len(vr)
frame_indices = np.array([i for i in range(0, num_frames, round(fps),)])

video = []
for frame_index in frame_indices:
    img = vr[frame_index].asnumpy()
    video.append(img)
video = np.stack(video)
image_sizes = [video[0].shape[:2]]
video = process_images(video, image_processor, model.config)
video = [item.unsqueeze(0) for item in video]

qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates["qwen"].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
# with torch.inference_mode():
#     output_ids = model.generate(
#         input_ids,
#         images=video,
#         image_sizes=image_sizes,
#         do_sample=False,
#         temperature=0.2,
#         max_new_tokens=128,
#         use_cache=True,
#         stopping_criteria=[stopping_criteria],
#     )
attention_mask = torch.ones_like(input_ids)
with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        attention_mask=attention_mask,
        images=video,
        image_sizes=image_sizes,
        do_sample=True,
        temperature=0.2,
        pad_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        use_cache=True,
        stopping_criteria=[stopping_criteria],
    )
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

输出:

'The video begins with a scene featuring two characters in an animated setting, one dressed in a bright yellow and red outfit with a mask, and the other in a blue and white traditional robe, standing on a rocky terrain with a green, leaf-like structure and a mountainous backdrop. The character in the yellow and red outfit is seen making a gesture with their right hand, while the other character appears to be speaking or reacting to the first character. The scene then transitions to a misty, ethereal environment where the same two characters are now standing on a staircase leading to a building with a golden roof, surrounded by smoke or clouds. The character in the yellow and red outfit is now holding a sword, while the other character is holding a fan, and both are looking up at the building. The scene shifts again to a large, ornate building with a golden roof, where a figure in a white and red outfit is seen descending a staircase, with smaller figures in white and red attire standing on the steps, and a large, white, cloud-like object in the foreground. The final scene shows the same building with the figure in white and red now seated on a golden throne, surrounded by smaller figures in white and red, and a large, white, cloud-like object still in the foreground, suggesting a ceremonial or significant event taking place.'

相关推荐
hunter2062068 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z10 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
刘大猫.1 小时前
vue3使用音频audio标签
音视频·audio·preload·加载音频文件·vue3使用audio·vue3使用音频·audio标签
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云6 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山9 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang10 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚