跟着小土堆学习pytorch(六)——神经网络的基本骨架(nn.model)

文章目录

一、model介绍

复制代码
容器                                          Containers
卷积层                                        Convolution Layers
池化层                                        Pooling layers
填白层                                        Padding Layers
非线性激活(加权和,非线性)                  Non-linear Activations (weighted sum, nonlinearity)
非线性激活(其他)                            Non-linear Activations (other)
正则化层                                      Normalization Layers
复发性层                                      Recurrent Layers
变压器层                                      Transformer Layers
线性层                                        Linear Layers
辍学层                                        Dropout Layers
稀疏层                                        Sparse Layers
距离函数                                      Distance Functions
损失函数                                      Loss Functions
视觉层                                        Vision Layers
洗牌层(打乱)                                Shuffle Layers
数据并行层                                    DataParallel Layers (multi-GPU, distributed)
量化的功能                                    Quantized Functions
惰性模块初始化                                Lazy Modules Initialization

以后一一介绍

二、Module

python 复制代码
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

定义自己的类(神经网络),自己继承了Module的父类,但是有想进行修改,则定义了__init__和forward ,

之后就是调用父类的初始化函数。forward(前向传播),backward(反向传播)。

x魏输入,F.relu(self.conv1(x)),先经过一次卷积conv1,之后经过一次非线性relu

由于返回时return F.relu(self.conv2(x))所有总共两组。

示例

python 复制代码
import torch
from torch import nn
class Tudui(nn.Module):
	def __init__(self):
		super().__init__()
	def forward(self,input):
		output = input + 1
		return output
tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

三、张量

3.1 定义

数学中

标量:单独的数

向量:一行或一列数组

矩阵:二维数组

张量:维度超过2的数组

PyTorch中

张量(Tensor)是一种数据结构,可以是一个标量、一个向量、一个矩阵,甚至是更高维度的数组。

所以PyTorch中的张量(Tensor)和Numpy中的**数组(ndarray)**非常相似。

3.2 用法

一、张量的数据类型、默认类型、类型转换。

二、张量的生成:torch.tensor()、torch.Tensor()、张量和NumPy数据互相转换、随机数生成张量、函数生成等。

三、张量操作:改变张量的形状、获取张量中的元素、拼接和拆分等。

四、张量计算:比较大小、基本运算、统计相关计算等。

文章链接:【PyTorch】张量超详细介绍(数据类型、生成、操作、计算)

相关推荐
我的xiaodoujiao1 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 18--测试框架Pytest基础 2--插件和参数化
python·学习·测试工具·pytest
今天只学一颗糖1 分钟前
Linux学习笔记--GPIO控制器驱动
笔记·学习
yuxb7326 分钟前
Ceph 分布式存储学习笔记(四):文件系统存储管理
笔记·ceph·学习
Sunhen_Qiletian30 分钟前
卷积神经网络搭建实战(二)——基于PyTorch框架和本地自定义图像数据集的食物分类案例(附输入图片预测功能)
pytorch·分类·cnn
Larry_Yanan31 分钟前
QML学习笔记(四十一)QML的ColorDialog和FontDialog
笔记·学习
星期天要睡觉35 分钟前
深度学习——基于 ResNet18 的图像分类训练
pytorch·python·机器学习
m0_678693331 小时前
深度学习笔记39-CGAN|生成手势图像 | 可控制生成(Pytorch)
深度学习·学习·生成对抗网络
小年糕是糕手1 小时前
【数据结构】双向链表“0”基础知识讲解 + 实战演练
c语言·开发语言·数据结构·c++·学习·算法·链表
将车2441 小时前
C++实现二叉树搜索树
开发语言·数据结构·c++·笔记·学习
GitNohup1 小时前
安装Anaconda和Pytorch
pytorch·anaconda