跟着小土堆学习pytorch(六)——神经网络的基本骨架(nn.model)

文章目录

一、model介绍

复制代码
容器                                          Containers
卷积层                                        Convolution Layers
池化层                                        Pooling layers
填白层                                        Padding Layers
非线性激活(加权和,非线性)                  Non-linear Activations (weighted sum, nonlinearity)
非线性激活(其他)                            Non-linear Activations (other)
正则化层                                      Normalization Layers
复发性层                                      Recurrent Layers
变压器层                                      Transformer Layers
线性层                                        Linear Layers
辍学层                                        Dropout Layers
稀疏层                                        Sparse Layers
距离函数                                      Distance Functions
损失函数                                      Loss Functions
视觉层                                        Vision Layers
洗牌层(打乱)                                Shuffle Layers
数据并行层                                    DataParallel Layers (multi-GPU, distributed)
量化的功能                                    Quantized Functions
惰性模块初始化                                Lazy Modules Initialization

以后一一介绍

二、Module

python 复制代码
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

定义自己的类(神经网络),自己继承了Module的父类,但是有想进行修改,则定义了__init__和forward ,

之后就是调用父类的初始化函数。forward(前向传播),backward(反向传播)。

x魏输入,F.relu(self.conv1(x)),先经过一次卷积conv1,之后经过一次非线性relu

由于返回时return F.relu(self.conv2(x))所有总共两组。

示例

python 复制代码
import torch
from torch import nn
class Tudui(nn.Module):
	def __init__(self):
		super().__init__()
	def forward(self,input):
		output = input + 1
		return output
tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

三、张量

3.1 定义

数学中

标量:单独的数

向量:一行或一列数组

矩阵:二维数组

张量:维度超过2的数组

PyTorch中

张量(Tensor)是一种数据结构,可以是一个标量、一个向量、一个矩阵,甚至是更高维度的数组。

所以PyTorch中的张量(Tensor)和Numpy中的**数组(ndarray)**非常相似。

3.2 用法

一、张量的数据类型、默认类型、类型转换。

二、张量的生成:torch.tensor()、torch.Tensor()、张量和NumPy数据互相转换、随机数生成张量、函数生成等。

三、张量操作:改变张量的形状、获取张量中的元素、拼接和拆分等。

四、张量计算:比较大小、基本运算、统计相关计算等。

文章链接:【PyTorch】张量超详细介绍(数据类型、生成、操作、计算)

相关推荐
helloyaren1 小时前
Docker Desktop里搭建Redis 8.2.1集群的保姆级教程
redis·学习·集群·cluster
风和日丽 随波逐流2 小时前
java17学习笔记
笔记·学习
钮钴禄·爱因斯晨2 小时前
AIGC浪潮下,风靡全球的Mcp到底是什么?一文讲懂,技术小白都知道!!
开发语言·人工智能·深度学习·神经网络·生成对抗网络·aigc
月盈缺12 小时前
学习嵌入式的第二十二天——数据结构——双向链表
数据结构·学习·链表
★YUI★14 小时前
学习游戏制作记录(制作系统与物品掉落系统)8.16
学习·游戏·ui·unity·c#
努力还债的学术吗喽14 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
伊织code15 小时前
PyTorch API 6
pytorch·api·ddp
学行库小秘17 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
范男18 小时前
基于Pytochvideo训练自己的的视频分类模型
人工智能·pytorch·python·深度学习·计算机视觉·3d·视频
南猿北者19 小时前
Cmake学习笔记
笔记·学习·策略模式