跟着小土堆学习pytorch(六)——神经网络的基本骨架(nn.model)

文章目录

一、model介绍

复制代码
容器                                          Containers
卷积层                                        Convolution Layers
池化层                                        Pooling layers
填白层                                        Padding Layers
非线性激活(加权和,非线性)                  Non-linear Activations (weighted sum, nonlinearity)
非线性激活(其他)                            Non-linear Activations (other)
正则化层                                      Normalization Layers
复发性层                                      Recurrent Layers
变压器层                                      Transformer Layers
线性层                                        Linear Layers
辍学层                                        Dropout Layers
稀疏层                                        Sparse Layers
距离函数                                      Distance Functions
损失函数                                      Loss Functions
视觉层                                        Vision Layers
洗牌层(打乱)                                Shuffle Layers
数据并行层                                    DataParallel Layers (multi-GPU, distributed)
量化的功能                                    Quantized Functions
惰性模块初始化                                Lazy Modules Initialization

以后一一介绍

二、Module

python 复制代码
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

定义自己的类(神经网络),自己继承了Module的父类,但是有想进行修改,则定义了__init__和forward ,

之后就是调用父类的初始化函数。forward(前向传播),backward(反向传播)。

x魏输入,F.relu(self.conv1(x)),先经过一次卷积conv1,之后经过一次非线性relu

由于返回时return F.relu(self.conv2(x))所有总共两组。

示例

python 复制代码
import torch
from torch import nn
class Tudui(nn.Module):
	def __init__(self):
		super().__init__()
	def forward(self,input):
		output = input + 1
		return output
tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

三、张量

3.1 定义

数学中

标量:单独的数

向量:一行或一列数组

矩阵:二维数组

张量:维度超过2的数组

PyTorch中

张量(Tensor)是一种数据结构,可以是一个标量、一个向量、一个矩阵,甚至是更高维度的数组。

所以PyTorch中的张量(Tensor)和Numpy中的**数组(ndarray)**非常相似。

3.2 用法

一、张量的数据类型、默认类型、类型转换。

二、张量的生成:torch.tensor()、torch.Tensor()、张量和NumPy数据互相转换、随机数生成张量、函数生成等。

三、张量操作:改变张量的形状、获取张量中的元素、拼接和拆分等。

四、张量计算:比较大小、基本运算、统计相关计算等。

文章链接:【PyTorch】张量超详细介绍(数据类型、生成、操作、计算)

相关推荐
烤麻辣烫3 分钟前
23种设计模式(新手)-7迪米特原则 合成复用原则
java·开发语言·学习·设计模式·intellij-idea
开开心心_Every1 小时前
Excel图片提取工具,批量导出无限制
学习·pdf·华为云·.net·excel·harmonyos·1024程序员节
952361 小时前
数据结构-二叉树
java·数据结构·学习
无妄无望1 小时前
ragflow代码学习切片方式(1)docling_parser.py
人工智能·python·学习
Elias不吃糖2 小时前
整合了c++里面常用的STL及其常用API
开发语言·c++·学习·stl
AI即插即用2 小时前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
Hello_Embed3 小时前
FreeRTOS 入门(四):堆的核心原理
数据结构·笔记·学习·链表·freertos·
先生沉默先3 小时前
NodeJs 学习日志(8):雪花算法生成唯一 ID
javascript·学习·node.js
T***u3334 小时前
后端缓存技术学习,Redis实战案例
redis·学习·缓存
Gorgous—l5 小时前
数据结构算法学习:LeetCode热题100-图论篇(岛屿数量、腐烂的橘子、课程表、实现 Trie (前缀树))
数据结构·学习·算法