跟着小土堆学习pytorch(六)——神经网络的基本骨架(nn.model)

文章目录

一、model介绍

容器                                          Containers
卷积层                                        Convolution Layers
池化层                                        Pooling layers
填白层                                        Padding Layers
非线性激活(加权和,非线性)                  Non-linear Activations (weighted sum, nonlinearity)
非线性激活(其他)                            Non-linear Activations (other)
正则化层                                      Normalization Layers
复发性层                                      Recurrent Layers
变压器层                                      Transformer Layers
线性层                                        Linear Layers
辍学层                                        Dropout Layers
稀疏层                                        Sparse Layers
距离函数                                      Distance Functions
损失函数                                      Loss Functions
视觉层                                        Vision Layers
洗牌层(打乱)                                Shuffle Layers
数据并行层                                    DataParallel Layers (multi-GPU, distributed)
量化的功能                                    Quantized Functions
惰性模块初始化                                Lazy Modules Initialization

以后一一介绍

二、Module

python 复制代码
class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

定义自己的类(神经网络),自己继承了Module的父类,但是有想进行修改,则定义了__init__和forward ,

之后就是调用父类的初始化函数。forward(前向传播),backward(反向传播)。

x魏输入,F.relu(self.conv1(x)),先经过一次卷积conv1,之后经过一次非线性relu

由于返回时return F.relu(self.conv2(x))所有总共两组。

示例

python 复制代码
import torch
from torch import nn
class Tudui(nn.Module):
	def __init__(self):
		super().__init__()
	def forward(self,input):
		output = input + 1
		return output
tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

三、张量

3.1 定义

数学中

标量:单独的数

向量:一行或一列数组

矩阵:二维数组

张量:维度超过2的数组

PyTorch中

张量(Tensor)是一种数据结构,可以是一个标量、一个向量、一个矩阵,甚至是更高维度的数组。

所以PyTorch中的张量(Tensor)和Numpy中的**数组(ndarray)**非常相似。

3.2 用法

一、张量的数据类型、默认类型、类型转换。

二、张量的生成:torch.tensor()、torch.Tensor()、张量和NumPy数据互相转换、随机数生成张量、函数生成等。

三、张量操作:改变张量的形状、获取张量中的元素、拼接和拆分等。

四、张量计算:比较大小、基本运算、统计相关计算等。

文章链接:【PyTorch】张量超详细介绍(数据类型、生成、操作、计算)

相关推荐
朝九晚五ฺ3 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
秀儿还能再秀4 小时前
神经网络(系统性学习三):多层感知机(MLP)
神经网络·学习笔记·mlp·多层感知机
猫爪笔记5 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
pq113_65 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio
澄澈i5 小时前
设计模式学习[8]---原型模式
学习·设计模式·原型模式
老艾的AI世界6 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
爱米的前端小笔记6 小时前
前端八股自学笔记分享—页面布局(二)
前端·笔记·学习·面试·求职招聘
alikami6 小时前
【前端】前端学习
学习
一只小菜鸡..7 小时前
241118学习日志——[CSDIY] [ByteDance] 后端训练营 [06]
学习
Hacker_Oldv8 小时前
网络安全的学习路线
学习·安全·web安全