Flink滑动窗口(Sliding)中window和windowAll的区别

滑动窗口的使用,主要是计算,在reduce之前添加滑动窗口,设置好间隔和所统计的时间,然后再进行reduce计算数据即可。

窗口设置好时间间隔,和处理时间窗口的时间,比如将滑动窗口的时间间隔都设置为5s,处理时间为15s,意思是每隔五秒,就处理15s秒的数据

滑动窗口(window)

比如打了3s的输入,到了第五秒的时候,滑动window开始处理15秒的数据,数据就像滑动一样,用一个线段展示。

代码展示:

java 复制代码
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class Demo4Window {
    public static void main(String[] args) throws Exception {
        //1、创建环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //2、读取数据
        DataStream<String> linesDS = env.socketTextStream("master", 8888);

        //使用lambda表达式处理数据
        DataStream<String> wordsDS = linesDS
                .flatMap((line, out) -> {
                    for (String word : line.split(",")) {
                        out.collect(word);
                    }
                }, Types.STRING);

        DataStream<Tuple2<String, Integer>> kvDS = wordsDS
                .map(word -> Tuple2.of(word, 1))
                //指定返回类型
                .returns(Types.TUPLE(Types.STRING, Types.INT));

        KeyedStream<Tuple2<String, Integer>, String> keyByDS = kvDS.keyBy(kv -> kv.f0);

        /*
         * SlidingProcessingTimeWindows:滑动的处理时间窗口
         */
        WindowedStream<Tuple2<String, Integer>, String, TimeWindow> windowDS = keyByDS
                //每隔5秒计算最近15秒的数据
                .window(SlidingProcessingTimeWindows.of(Time.seconds(15), Time.seconds(5)));


        //kv1代表之前的结果(状态),kv2代码最新一条数据
        //reduce:有状态计算
        DataStream<Tuple2<String, Integer>> countDS = windowDS
                .reduce((kv1, kv2) -> Tuple2.of(kv1.f0, kv1.f1 + kv2.f1));

        countDS.print();

        //execute方法会触发任务执行(任务调度)
        env.execute("lambda");
    }
}

滑动窗口(windowAll)

将同一个窗口的数据放在一起计算,将之前计算的结果与最新统计的结果相加

代码展示:

java 复制代码
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class Demo4WindowAll {
    public static void main(String[] args) throws Exception {
        //1、创建环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //2、读取数据
        DataStream<String> linesDS = env.socketTextStream("master", 8888);

        //使用lambda表达式处理数据
        DataStream<String> wordsDS = linesDS
                .flatMap((line, out) -> {
                    for (String word : line.split(",")) {
                        out.collect(word);
                    }
                }, Types.STRING);

        DataStream<Tuple2<String, Integer>> kvDS = wordsDS
                .map(word -> Tuple2.of(word, 1))
                //指定返回类型
                .returns(Types.TUPLE(Types.STRING, Types.INT));

        /*
         * SlidingProcessingTimeWindows:滑动的处理时间窗口
         */
        AllWindowedStream<Tuple2<String, Integer>, TimeWindow> windowAllDS = kvDS
                //每隔5秒计算最近15秒的数据
                //windowAll:将同一个窗口的数据发一起进行计算
                .windowAll(SlidingProcessingTimeWindows.of(Time.seconds(15), Time.seconds(5)));

        //kv1代表之前的结果(状态),kv2代码最新一条数据
        //reduce:有状态计算
        DataStream<Tuple2<String, Integer>> countDS = windowAllDS
                .reduce((kv1, kv2) -> Tuple2.of(kv1.f0, kv1.f1 + kv2.f1));

        countDS.print();

        //execute方法会触发任务执行(任务调度)
        env.execute("lambda");
    }
}
相关推荐
Edingbrugh.南空17 小时前
Flink ClickHouse 连接器维表源码深度解析
java·clickhouse·flink
诗旸的技术记录与分享1 天前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
Edingbrugh.南空1 天前
Flink MySQL CDC 环境配置与验证
mysql·adb·flink
bxlj_jcj2 天前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
Edingbrugh.南空2 天前
Flink SQLServer CDC 环境配置与验证
数据库·sqlserver·flink
Edingbrugh.南空2 天前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
Edingbrugh.南空3 天前
Flink TiDB CDC 环境配置与验证
大数据·flink·tidb
Edingbrugh.南空3 天前
Flink Postgres CDC 环境配置与验证
大数据·flink
lifallen4 天前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
expect7g13 天前
新时代多流Join的一个思路----Partial Update
后端·flink