Hive 查询(详细实操版)

语法结构

SELECT [ALL | DISTINCT] 字段名, 字段名, ...
FROM 表名 [inner | left outer | right outer | full outer | left semi JOIN 表名 ON 关联条件 ]
[WHERE 非聚合条件]
[GROUP BY 分组字段名]
[HAVING 聚合条件]
[ORDER BY 排序字段名 asc | desc]
[CLUSTER  BY 字段名 | [DISTRIBUTE BY 字段名 SORT BY 字段名]]
[LIMIT x,y]

抽样查询

知识点

TABLESAMPLE抽样好处: 尽可能实现随机抽样,并且不走MR,查询效率相对较快。

基于随机分桶抽样格式: SELECT 字段名 FROM tbl TABLESAMPLE(BUCKET x OUT OF y ON(字段名 | rand()))

y:决定将表数据随机划分成多少份

x:决定从第几份数据开始采样

| : 或者

字段名: 表示随机的依据基于某个列的值,每次按相关规则取样结果都是一致

rand(): 表示随机的依据基于整行,每次取样结果不同

准备数据

数据文件👉a_orders.txt

-- 创建订单表
CREATE TABLE orders (
    orderId bigint COMMENT '订单id',
    orderNo string COMMENT '订单编号',
    shopId bigint COMMENT '门店id',
    userId bigint COMMENT '用户id',
    orderStatus tinyint COMMENT '订单状态 -3:用户拒收 -2:未付款的订单 -1:用户取消 0:待发货 1:配送中 2:用户确认收货',
    goodsMoney double COMMENT '商品金额',
    deliverMoney double COMMENT '运费',
    totalMoney double COMMENT '订单金额(包括运费)',
    realTotalMoney double COMMENT '实际订单金额(折扣后金额)',
    payType tinyint COMMENT '支付方式,0:未知;1:支付宝,2:微信;3、现金;4、其他',
    isPay tinyint COMMENT '是否支付 0:未支付 1:已支付',
    userName string COMMENT '收件人姓名',
    userAddress string COMMENT '收件人地址',
    userPhone string COMMENT '收件人电话',
    createTime timestamp COMMENT '下单时间',
    payTime timestamp COMMENT '支付时间',
    totalPayFee int COMMENT '总支付金额'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
-- 加载数据,通过hdfs上传至/目录下
load data inpath  '/a_orders.txt' into table orders;
-- 验证数据
select * from orders;

随机抽样函数 tablesample

-- 参考字段分桶抽样,快且随机
select * from orders tablesample ( bucket 1 out of 10 on orderid);
-- 参考rand()随机数,快且真正达到随机
select * from orders tablesample ( bucket 1 out of 10 on rand());


-- 快速取前面部分数据 : 快但没有随机
-- 前100条
select  * from orders tablesample ( 100 rows );
-- 前10%数据
select  * from orders tablesample ( 10 percent );
-- 取1k或者1m的数据
select  * from orders tablesample ( 16k );
select  * from orders tablesample ( 167k );
select  * from orders tablesample ( 1m );

-- 随机取100条: 随机但是不快
select * from orders distribute by rand() sort by rand() limit 100;

正则模糊查询

sql模糊查询和正则模糊查询的区别

sql模糊查询关键字: like 任意0个或者多个: % 任意1个: _

正则模糊查询关键字: rlike 任意0个或者多个: .* 任意1个: . 正则语法还有很多......

-- 1.查询广东省数据
-- sql模糊查询
select * from orders where userAddress like '广东省%';
-- 正则模糊查询
select * from orders where userAddress rlike '广东省.*';

-- 2. 查询满足'xx省 xx市 xx区'格式的信息
-- sql模糊查询
select * from orders where userAddress like '__省 __市 __区';
-- 正则模糊查询
select * from orders where userAddress rlike '..省 ..市 ..区';

-- 3.查询所有姓张王邓的用户信息
-- sql模糊查询
select * from orders where username like '张%' or username like '王%' or username like '邓%' ;
-- 正则模糊查询
select * from orders where username rlike '[张王邓].*';
select * from orders where username rlike "[张王邓].+";

-- 4.查找所有188开头的手机号
-- sql模糊查询
select * from orders where userPhone like '188________' ;
-- 正则模糊查询
select * from orders where userPhone rlike '188........' ;
select * from orders where userPhone rlike '188.{8}' ;
select * from orders where userPhone rlike '188\\*{4}[0-9]{4}' ;
select * from orders where userPhone rlike '188\\*{4}\\d{4}' ;

CTE表达式

CTE: 公用表表达式(CTE)是一个在查询中定义的临时命名结果集将在from子句中使用它。

注意: 每个CTE仅被定义一次(但在其作用域内可以被引用任意次),仅适用于当前运行的sql语句。

语法如下:

with 临时结果集的别名1 as (子查询语句),

临时结果集的别名2 as (子查询语句)

...

select 字段名 from (子查询语句);

根据实际使用次数可以决定用"CTE表达式"还是"视图"还是"建表":

with 临时结果名 as (select语句) > create view 视图名 as select语句 > create table 表名 as select语句。

内置虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive目前可用3个虚拟列:

  • INPUT__FILE__NAME:显示数据行所在的具体文件
  • BLOCK__OFFSET__INSIDE__FILE:显示数据行所在文件的偏移量
  • ROW__OFFSET__INSIDE__BLOCK:显示数据所在HDFS块的偏移量

注意: 此虚拟列需要设置:SET hive.exec.rowoffset=true才可使用

SET hive.exec.rowoffset=true;

select * ,INPUT__FILE__NAME,BLOCK__OFFSET__INSIDE__FILE,ROW__OFFSET__INSIDE__BLOCK from students;​

-- 按照位置分组
select INPUT__FILE__NAME ,count(*) from students group by INPUT__FILE__NAME;​​

--按照偏移量查询
select *,BLOCK__OFFSET__INSIDE__FILE  from students where BLOCK__OFFSET__INSIDE__FILE > 100;
相关推荐
重生之Java再爱我一次3 小时前
Hive部署
数据仓库·hive·hadoop
想做富婆3 小时前
大数据,Hadoop,HDFS的简单介绍
大数据·hadoop·分布式
WorkAgent4 小时前
windows下本地部署安装hadoop+scala+spark-【不需要虚拟机】
hadoop·spark·scala
JZC_xiaozhong5 小时前
低空经济中的数据孤岛难题,KPaaS如何破局?
大数据·运维·数据仓库·安全·ci/cd·数据分析·数据库管理员
村口蹲点的阿三15 小时前
Spark SQL 中对 Map 类型的操作函数
javascript·数据库·hive·sql·spark
重生之Java再爱我一次17 小时前
Hadoop集群搭建
大数据·hadoop·分布式
中东大鹅18 小时前
MongoDB的索引与聚合
数据库·hadoop·分布式·mongodb
狮歌~资深攻城狮20 小时前
TiDB出现后,大数据技术的未来方向
数据库·数据仓库·分布式·数据分析·tidb
狮歌~资深攻城狮20 小时前
TiDB 和信创:如何推动国产化数据库的发展?
数据库·数据仓库·分布式·数据分析·tidb