Fisher_Score分数计算

Fisher_Score 计算

自己实现的代码

matlab 复制代码
function W = fsFisher(data)
	%Fisher Score
	% Input:
	%	data: dataset 
	% Output:
	%   W: W(i) represents the Fisher Score of the i-th feature.  

	% numC = max(Y);
	Y = data(:, end); % 提取标签
	X  = data(:, 1:end-1); % 提取样本数据,去掉标签列
	unique_labels = unique(Y); % 获取所有唯一的类别标签
	numC = length(unique_labels); % 类别数量

	[~, numF] = size(X);
	W = zeros(1,numF);

	% statistic for classes
	cIDX = cell(numC,1);
	n_i = zeros(numC,1);
	for j = 1:numC
		%cIDX{j} = find(Y(:)==j);
		cIDX{j} = find(Y(:)==unique_labels(j));
		n_i(j) = length(cIDX{j});
	end

	% calculate score for each features
	for i = 1:numF
		temp1 = 0;
		temp2 = 0;
		f_i = X(:,i);
		u_i = mean(f_i);
		
		for j = 1:numC
			u_cj = mean(f_i(cIDX{j}));
			var_cj = var(f_i(cIDX{j}),1);
			temp1 = temp1 + n_i(j) * (u_cj-u_i)^2;
			temp2 = temp2 + n_i(j) * var_cj;
		end
		% check
		if temp1 == 0
			W(i) = 0;
		else
			if temp2 == 0
				W(i) = 100;
			else
				W(i) = temp1/temp2;
			end
		end
	end
end

matlab代码如下

matlab 复制代码
function [out] = fsFisher(X,Y)
%Fisher Score, use the N var formulation
%   X, the data, each raw is an instance
%   Y, the label in 1 2 3 ... format

numC = max(Y);
[~, numF] = size(X);
out.W = zeros(1,numF);

% statistic for classes
cIDX = cell(numC,1);
n_i = zeros(numC,1);
for j = 1:numC
    cIDX{j} = find(Y(:)==j);
    n_i(j) = length(cIDX{j});
end

% calculate score for each features
for i = 1:numF
    temp1 = 0;
    temp2 = 0;
    f_i = X(:,i);
    u_i = mean(f_i);
    
    for j = 1:numC
        u_cj = mean(f_i(cIDX{j}));
        var_cj = var(f_i(cIDX{j}),1);
        temp1 = temp1 + n_i(j) * (u_cj-u_i)^2;
        temp2 = temp2 + n_i(j) * var_cj;
    end
    
    if temp1 == 0
        out.W(i) = 0;
    else
        if temp2 == 0
            out.W(i) = 100;
        else
            out.W(i) = temp1/temp2;
        end
    end
end

[~, out.fList] = sort(out.W, 'descend');
out.prf = 1;

Bibtex 引用

复制代码
@BOOK{Duda-etal01,
   title = {Pattern Classification},
   publisher = {John Wiley \& Sons, New York},
   year = {2001},
   author = {Duda, R.O. and Hart, P.E. and Stork, D.G.},
   edition = {2},
  }
}

来源:Feature Selection Package - Algorithms - Fisher Score

相关推荐
kngines38 分钟前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
kngines7 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
曹勖之9 天前
simuilink和ROS2数据联通,Run后一直卡在Initializting
windows·matlab·simulink·ros2
Zevalin爱灰灰10 天前
MATLAB GUI界面设计 第三章——仪器组件
开发语言·ui·matlab
大数据CLUB10 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
不秃的卤蛋10 天前
回归任务与分类任务的区别
人工智能·分类·数据挖掘·回归
电商API_1800790524710 天前
实现自动胡批量抓取唯品会商品详情数据的途径分享(官方API、网页爬虫)
java·前端·爬虫·数据挖掘·网络爬虫
大千AI助手10 天前
决策树:化繁为简的智能决策利器
人工智能·算法·决策树·机器学习·数据挖掘·tree·decisiontree
算法如诗10 天前
基于SOA(海鸥优化算法)的路径规划Matlab实现方案
开发语言·算法·matlab
项目申报小狂人10 天前
2025年中科院三区全新算法,恒星振荡优化器:受自然启发的元启发式优化,完整MATLAB代码免费获取
开发语言·算法·matlab