2016年7月29日至2017年2月21日NASA大气层层析(ATom)任务甲醛(HCHO)、羟基(OH)和OH生产率的剖面积分柱密度

目录

简介

摘要

引用

网址推荐

知识星球

机器学习


ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere

ATom: 远对流层中羟基和甲醛的柱积分密度

简介

该数据集提供了甲醛(HCHO)、羟基(OH)和OH生产率的剖面积分柱密度、昼夜对流层平均OH浓度以及从2016年7月29日至2017年2月21日NASA大气层层析(ATom)任务1和2航班的选定剖面直接观测数据中得出的不确定性。这些计算产品与臭氧监测仪(OMI)获得的同时HCHO柱检索结果相结合,以缩放和扩展剖面结果到全球网格化(0.5度纬度 x 0.625度经度)产品。除了OMI甲醛柱数据外,还提供了全球建模倡议(GMI)的模型输出产品,包括平均对流层顶高度、缩放因子、柱空气质量和柱平均甲醛光解频率。GMI模型输出产品用于计算,并为用户方便而包含在内。

摘要

该数据集记录了遥远对流层中水氧和甲醛的列积分浓度。其中,遥远对流层是指大气层中高度较高的部分,远离地面源污染和人类活动的影响。水氧是一种包含氢和氧原子的化合物,常见于自然环境中的大气和水体中。甲醛是一种含有碳、氢、氧的挥发性有机物,常见于空气中的低层大气和一些工业过程中。这些数据对了解遥远对流层中水氧和甲醛的浓度分布、变化和来源具有重要意义,有助于研究大气化学、气候变化和空气质量等相关领域。

代码

python 复制代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ATom_Mapping_OH_Troposphere_1669",
    cloud_hosted=True,
    bounding_box=(-180.0, -90.0, 179.99, 90.0),
    temporal=("2016-07-29", "2017-02-21"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Wolfe, G. M., J. Nicely, J. M. St. Clair, T. F. Hanisco, J. Liao, L. Oman, W. H. Brune, D. Miller, A. Thames, G. G. Abad, T. B. Ryerson, J. Peischl, K. McKain, C. Sweeney, P. Wennberg, M. Kim, J. D. Crounse, S. R. Hall, K. Ullmann, G. S. Diskin, T. P. Bui, C. Chang, and J. Dean-Day (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg

相关推荐
jay神2 天前
基于深度学习的交通流量预测系统
人工智能·深度学习·自然语言处理·数据集·计算机毕业设计
极智视界3 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机3 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
极智视界3 天前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
地球资源数据云3 天前
【最新更新】中国2000-2025平均值合成白天地表温度(LST)年度数据集
数据分析·数据集·遥感数据
音沐mu.3 天前
YOLO目标检测数据集大全【数据集+训练好的模型+训练检测教程】(持续更新)
人工智能·yolo·目标检测·数据集
前网易架构师-高司机5 天前
带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%
yolo·数据集··大块煤
地球资源数据云5 天前
【免费下载】中国5米分辨率坡度数据
数据分析·数据集·遥感数据
2401_841495645 天前
【数据挖掘】Apriori算法
python·算法·数据挖掘·数据集·关联规则挖掘·关联规则·频繁项集挖掘
前网易架构师-高司机6 天前
带标注的煤矿标尺识别数据集,识别率99.5%,支持yolo,coco json,pascal voc xml格式的标注
数据集·标尺·标杆··