2016年7月29日至2017年2月21日NASA大气层层析(ATom)任务甲醛(HCHO)、羟基(OH)和OH生产率的剖面积分柱密度

目录

简介

摘要

引用

网址推荐

知识星球

机器学习


ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere

ATom: 远对流层中羟基和甲醛的柱积分密度

简介

该数据集提供了甲醛(HCHO)、羟基(OH)和OH生产率的剖面积分柱密度、昼夜对流层平均OH浓度以及从2016年7月29日至2017年2月21日NASA大气层层析(ATom)任务1和2航班的选定剖面直接观测数据中得出的不确定性。这些计算产品与臭氧监测仪(OMI)获得的同时HCHO柱检索结果相结合,以缩放和扩展剖面结果到全球网格化(0.5度纬度 x 0.625度经度)产品。除了OMI甲醛柱数据外,还提供了全球建模倡议(GMI)的模型输出产品,包括平均对流层顶高度、缩放因子、柱空气质量和柱平均甲醛光解频率。GMI模型输出产品用于计算,并为用户方便而包含在内。

摘要

该数据集记录了遥远对流层中水氧和甲醛的列积分浓度。其中,遥远对流层是指大气层中高度较高的部分,远离地面源污染和人类活动的影响。水氧是一种包含氢和氧原子的化合物,常见于自然环境中的大气和水体中。甲醛是一种含有碳、氢、氧的挥发性有机物,常见于空气中的低层大气和一些工业过程中。这些数据对了解遥远对流层中水氧和甲醛的浓度分布、变化和来源具有重要意义,有助于研究大气化学、气候变化和空气质量等相关领域。

代码

python 复制代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ATom_Mapping_OH_Troposphere_1669",
    cloud_hosted=True,
    bounding_box=(-180.0, -90.0, 179.99, 90.0),
    temporal=("2016-07-29", "2017-02-21"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Wolfe, G. M., J. Nicely, J. M. St. Clair, T. F. Hanisco, J. Liao, L. Oman, W. H. Brune, D. Miller, A. Thames, G. G. Abad, T. B. Ryerson, J. Peischl, K. McKain, C. Sweeney, P. Wennberg, M. Kim, J. D. Crounse, S. R. Hall, K. Ullmann, G. S. Diskin, T. P. Bui, C. Chang, and J. Dean-Day (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg

相关推荐
此星光明7 小时前
GEE 数据集——美国gNATSGO(网格化国家土壤调查地理数据库)完整覆盖了美国所有地区和岛屿领土的最佳可用土壤信息
javascript·数据库·数据集·美国·数据·gee·土壤
OpenBayes9 小时前
OpenBayes 一周速览丨VASP 教程上线!HPC 助力材料计算;AllClear 公共云层去除数据集发布,含超 23k 个全球分布的兴趣区域
人工智能·深度学习·机器学习·自然语言处理·开源·数据集·大语言模型
数据猎手小k3 天前
CulturalBench :一个旨在评估大型语言模型在全球不同文化背景下知识掌握情况的基准测试数据集
数据集·机器学习数据集·ai大模型应用
数据猎手小k5 天前
GS-Blur数据集:首个基于3D场景合成的156,209对多样化真实感模糊图像数据集。
数据集·机器学习数据集·ai大模型应用
HyperAI超神经5 天前
贝式计算的 AI4S 观察:使用机器学习对世界进行感知与推演,最大魅力在于横向扩展的有效性
人工智能·深度学习·机器学习·数据集·ai4s·科研领域·工科
HyperAI超神经7 天前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
DogDaoDao7 天前
深度学习常用开源数据集介绍【持续更新】
图像处理·人工智能·深度学习·ai·数据集
QQ_51929232814 天前
【大象数据集】大象图像识别 目标检测 机器视觉(含数据集)
目标检测·数据集·大象数据集
QQ_51929232815 天前
【水下生物数据集】 水下生物识别 深度学习 目标检测 机器视觉 yolo(含数据集)
python·目标检测·数据集·海洋生物数据集