Kylin Server V10 下自动安装并配置Kafka

Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性采集、聚合统计系统运营数据(监测数据)、日志收集等大量数据的互联网服务的数据收集场景。

1. 查看操作系统信息

[root@localhost ~]# cat /etc/.kyinfo

[dist]

name=Kylin

milestone=Server-V10-GFB-Release-ZF9_01-2204-Build03

arch=arm64

beta=False

time=2023-01-09 11:04:36

dist_id=Kylin-Server-V10-GFB-Release-ZF9_01-2204-Build03-arm64-2023-01-09 11:04:36

[servicekey]

key=0080176

[os]

to=

term=2024-05-16

2. 编辑setup.sh安装脚本

bash 复制代码
#!/bin/bash
###########################################################################################
#  @programe  : setup.sh 
#  @version   : 3.8.1                                                       
#  @function@ : 
#  @campany   : 
#  @dep.      :                                         
#  @writer    : Liu Cheng ji                                              
#  @phone     : 18037139992                                              
#  @date      : 2024-09-24                                               
############################################################################################

getent group kafka >/dev/null  || groupadd -r kafka
getent passwd kafka >/dev/null || useradd -r -g kafka -d /var/lib/kafka \
	-s /sbin/nologin -c "Kafka user" kafka


tar -zxvf kafka.tar.gz -C /usr/local/
mkdir /usr/local/kafka/logs -p
cp -f ./config/server.properties /usr/local/kafka/config/
chown -R kafka:kafka /usr/local/kafka

cp ./config/kafka.sh /etc/profile.d/
chown root:root /etc/profile.d/kafka.sh
chmod 644 /etc/profile.d/kafka.sh
source /etc/profile

cp ./config/kafka.service /usr/lib/systemd/system/
chown root:root /usr/lib/systemd/system/kafka.service
chmod 644 /usr/lib/systemd/system/kafka.service

cp ./config/kafka.conf /usr/lib/tmpfiles.d/
chown root:root /usr/lib/tmpfiles.d/kafka.conf
chmod 0644 /usr/lib/tmpfiles.d/kafka.conf
systemd-tmpfiles --create /usr/lib/tmpfiles.d/kafka.conf

systemctl unmask kafka.service
systemctl daemon-reload
service_power_on_status=`systemctl is-enabled kafka`
if [ $service_power_on_status != 'enabled' ]; then
	systemctl enable kafka.service
fi


echo "+--------------------------------------------------------------------------------------------------------------+"
echo "|                                        	   Kafka 3.8.1 Install Sucesses                                      |"
echo "+--------------------------------------------------------------------------------------------------------------+"

3. 设置环境变量配置文件kafka.sh

bash 复制代码
export KAFKA_HOME=/usr/local/kafka
export PATH=$KAFKA_HOME/bin:$PATH

4. 设置kafka.service文件

bash 复制代码
[Unit]
Requires=zookeeper.service
After=zookeeper.service

[Service]
Type=simple
LimitNOFILE=1048576
ExecStart=/usr/local/kafka/bin/kafka-server-start.sh /usr/local/kafka/config/server.properties 
ExecStop=/usr/local/kafka/bin/kafka-server-stop.sh
Restart=Always

[Install]
WantedBy=multi-user.target

5. 编写 kafka.conf 文件

bash 复制代码
d /var/lib/kafka 0775 kafka kafka -

6. 根据需要优化设置server.properties文件

bash 复制代码
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# This configuration file is intended for use in ZK-based mode, where Apache ZooKeeper is required.
# See kafka.server.KafkaConfig for additional details and defaults
#

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. If not configured, the host name will be equal to the value of
# java.net.InetAddress.getCanonicalHostName(), with PLAINTEXT listener name, and port 9092.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://:15903

# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
advertised.listeners=PLAINTEXT://your.host.name:15903

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=128

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=65

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
log.dirs=/usr/local/kafka/logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
#log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:15902

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
  1. 配置说明
相关推荐
zhixingheyi_tian3 小时前
Spark 之 Aggregate
大数据·分布式·spark
PersistJiao3 小时前
Spark 分布式计算中网络传输和序列化的关系(一)
大数据·网络·spark
KevinAha5 小时前
Kafka 3.5 源码导读
kafka
求积分不加C5 小时前
-bash: ./kafka-topics.sh: No such file or directory--解决方案
分布式·kafka
nathan05295 小时前
javaer快速上手kafka
分布式·kafka
宅小海6 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白6 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋6 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
激流丶8 小时前
【Kafka 实战】Kafka 如何保证消息的顺序性?
java·后端·kafka
Java 第一深情10 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算