sqoop资源优化记录

  1. 场景:

利用sqoop 导入千万级大概1K8W条Oracle数据到hive多分区表中

集群资源:132G,96cores

队列highway资源:

yarn.scheduler.capacity.root.highway.capacity=40

yarn.scheduler.capacity.root.highway.maximum-capacity=70

yarn.scheduler.capacity.root.highway.minimum-user-limit-percent=80

yarn.scheduler.capacity.root.highway.state=RUNNING

yarn.scheduler.capacity.root.highway.user-limit-factor=2

分区字段:

原本sqoop脚本:

sqoop import --D mapred.job.queue.name=highway \
--connect "jdbc:oracle:thin:@//localhost:61521/LZY2" \
--username LZSHARE \
--password '123456' \
--query "SELECT 
    TO_CHAR(GCRQ, 'YYYY') AS gcrq_year,
    TO_CHAR(GCRQ, 'MM') AS gcrq_month,
    TO_CHAR(GCRQ, 'DD') AS gcrq_day,
    YEAR,
    TO_CHAR(GCRQ, 'YYYY-MM-DD HH24:MI:SS') AS GCRQ,
    GCZBS,
    HOUR,
    MINUTE,
    ......
    DELETE_BY,
    TO_CHAR(DELETE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS DELETE_TIME,
    CREATE_BY,
    TO_CHAR(CREATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS CREATE_TIME,
    UPDATE_BY,
    TO_CHAR(UPDATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS UPDATE_TIME,
    TO_CHAR(INSERT_TIME, 'YYYY-MM-DD HH24:MI:SS') AS INSERT_TIME
	FROM LZJHGX.dat_dcsj_time
WHERE TO_CHAR(GCRQ , 'YYYY-MM-DD') < TO_CHAR(SYSDATE, 'YYYY-MM-DD') AND \$CONDITIONS" \
--split-by MINUTE \
--hcatalog-database dw \
--hcatalog-table ods_pre_dat_dcsj_time \
--hcatalog-storage-stanza 'stored as orc' \
--num-mappers 5

问题1:Error: Java heap space Out of Memory

解决思路:分析splitby字段,这是作为splitby字段MINUTE的情况:

如果按照上述划分,如果5个mapper,平均一个mapper处理4.5百万数据。明显不合理,另选一个splitby字段 (由于没有id和自增键),情况如下:

范围是1~288,每个分组6W多条数据。

第二,增加mapper个数,设定每个mapper所使用的个数

-D mapreduce.map.memory.mb=4096 \
-D mapreduce.map.java.opts=-Xmx3072m \

--num-mappers 20

其实还有一个,尽量避免复杂查询。

bash 复制代码
sqoop import -D mapred.job.queue.name=highway \
-D mapreduce.map.memory.mb=4096 \
-D mapreduce.map.java.opts=-Xmx3072m \
--connect "jdbc:oracle:thin:@//localhost:61521/LZY2" \
--username LZSHARE \
--password '123456' \
--query "SELECT 
    TO_CHAR(GCRQ, 'YYYY') AS gcrq_year,
    TO_CHAR(GCRQ, 'MM') AS gcrq_month,
    TO_CHAR(GCRQ, 'DD') AS gcrq_day,
    YEAR,
    TO_CHAR(GCRQ, 'YYYY-MM-DD HH24:MI:SS') AS GCRQ,
    GCZBS,
    .......
    ERR_CODE,
    ERR_DESC,
    DELETE_BY,
    TO_CHAR(DELETE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS DELETE_TIME,
    CREATE_BY,
    TO_CHAR(CREATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS CREATE_TIME,
    UPDATE_BY,
    TO_CHAR(UPDATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS UPDATE_TIME,
    TO_CHAR(INSERT_TIME, 'YYYY-MM-DD HH24:MI:SS') AS INSERT_TIME
	FROM LZJHGX.dat_dcsj_time
WHERE TO_CHAR(GCRQ , 'YYYY-MM-DD') < TO_CHAR(SYSDATE, 'YYYY-MM-DD') AND \$CONDITIONS" \
--split-by sjxh \
--hcatalog-database dw \
--hcatalog-table ods_pre_dat_dcsj_time \
--hcatalog-storage-stanza 'stored as orc' \
--num-mappers 20

最后再次运行:耗时4分钟左右

成功导入:

相关推荐
村口蹲点的阿三9 小时前
Spark SQL 中对 Map 类型的操作函数
javascript·数据库·hive·sql·spark
重生之Java再爱我一次11 小时前
Hadoop集群搭建
大数据·hadoop·分布式
中东大鹅12 小时前
MongoDB的索引与聚合
数据库·hadoop·分布式·mongodb
雪芽蓝域zzs15 小时前
JavaWeb开发(十五)实战-生鲜后台管理系统(二)注册、登录、记住密码
数据仓库·hive·hadoop
想做富婆20 小时前
Hive: Hive的优缺点,使用方式,判断Hive是否启动(jps),元数据的存储,Hive和Hadoop的关系
数据仓库·hive·hadoop
村口蹲点的阿三20 小时前
spark sql中对array数组类型操作函数列表
大数据·数据库·hive·sql·spark·database
互联网上的猪1 天前
大数据Hadoop中MapReduce的介绍包括编程模型、工作原理(MapReduce、MapTask、ReduceTask、Shuffle工作原理)
大数据·hadoop·mapreduce
大鳥1 天前
Apache Hive 聚合函数与 OVER 窗口函数:从基础到高级应用
hive·hadoop·apache
中东大鹅1 天前
MongoDB实训:电子商务日志存储任务
大数据·数据库·hadoop·分布式·mongodb
m0_748250741 天前
HDFS的架构优势与基本操作
hadoop·hdfs·架构