sqoop资源优化记录

  1. 场景:

利用sqoop 导入千万级大概1K8W条Oracle数据到hive多分区表中

集群资源:132G,96cores

队列highway资源:

yarn.scheduler.capacity.root.highway.capacity=40

yarn.scheduler.capacity.root.highway.maximum-capacity=70

yarn.scheduler.capacity.root.highway.minimum-user-limit-percent=80

yarn.scheduler.capacity.root.highway.state=RUNNING

yarn.scheduler.capacity.root.highway.user-limit-factor=2

分区字段:

原本sqoop脚本:

复制代码
sqoop import --D mapred.job.queue.name=highway \
--connect "jdbc:oracle:thin:@//localhost:61521/LZY2" \
--username LZSHARE \
--password '123456' \
--query "SELECT 
    TO_CHAR(GCRQ, 'YYYY') AS gcrq_year,
    TO_CHAR(GCRQ, 'MM') AS gcrq_month,
    TO_CHAR(GCRQ, 'DD') AS gcrq_day,
    YEAR,
    TO_CHAR(GCRQ, 'YYYY-MM-DD HH24:MI:SS') AS GCRQ,
    GCZBS,
    HOUR,
    MINUTE,
    ......
    DELETE_BY,
    TO_CHAR(DELETE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS DELETE_TIME,
    CREATE_BY,
    TO_CHAR(CREATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS CREATE_TIME,
    UPDATE_BY,
    TO_CHAR(UPDATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS UPDATE_TIME,
    TO_CHAR(INSERT_TIME, 'YYYY-MM-DD HH24:MI:SS') AS INSERT_TIME
	FROM LZJHGX.dat_dcsj_time
WHERE TO_CHAR(GCRQ , 'YYYY-MM-DD') < TO_CHAR(SYSDATE, 'YYYY-MM-DD') AND \$CONDITIONS" \
--split-by MINUTE \
--hcatalog-database dw \
--hcatalog-table ods_pre_dat_dcsj_time \
--hcatalog-storage-stanza 'stored as orc' \
--num-mappers 5

问题1:Error: Java heap space Out of Memory

解决思路:分析splitby字段,这是作为splitby字段MINUTE的情况:

如果按照上述划分,如果5个mapper,平均一个mapper处理4.5百万数据。明显不合理,另选一个splitby字段 (由于没有id和自增键),情况如下:

范围是1~288,每个分组6W多条数据。

第二,增加mapper个数,设定每个mapper所使用的个数

-D mapreduce.map.memory.mb=4096 \
-D mapreduce.map.java.opts=-Xmx3072m \

--num-mappers 20

其实还有一个,尽量避免复杂查询。

bash 复制代码
sqoop import -D mapred.job.queue.name=highway \
-D mapreduce.map.memory.mb=4096 \
-D mapreduce.map.java.opts=-Xmx3072m \
--connect "jdbc:oracle:thin:@//localhost:61521/LZY2" \
--username LZSHARE \
--password '123456' \
--query "SELECT 
    TO_CHAR(GCRQ, 'YYYY') AS gcrq_year,
    TO_CHAR(GCRQ, 'MM') AS gcrq_month,
    TO_CHAR(GCRQ, 'DD') AS gcrq_day,
    YEAR,
    TO_CHAR(GCRQ, 'YYYY-MM-DD HH24:MI:SS') AS GCRQ,
    GCZBS,
    .......
    ERR_CODE,
    ERR_DESC,
    DELETE_BY,
    TO_CHAR(DELETE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS DELETE_TIME,
    CREATE_BY,
    TO_CHAR(CREATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS CREATE_TIME,
    UPDATE_BY,
    TO_CHAR(UPDATE_TIME, 'YYYY-MM-DD HH24:MI:SS') AS UPDATE_TIME,
    TO_CHAR(INSERT_TIME, 'YYYY-MM-DD HH24:MI:SS') AS INSERT_TIME
	FROM LZJHGX.dat_dcsj_time
WHERE TO_CHAR(GCRQ , 'YYYY-MM-DD') < TO_CHAR(SYSDATE, 'YYYY-MM-DD') AND \$CONDITIONS" \
--split-by sjxh \
--hcatalog-database dw \
--hcatalog-table ods_pre_dat_dcsj_time \
--hcatalog-storage-stanza 'stored as orc' \
--num-mappers 20

最后再次运行:耗时4分钟左右

成功导入:

相关推荐
IT成长日记36 分钟前
【Hive入门】Hive基础操作与SQL语法:DDL操作全面指南
hive·hadoop·sql·ddl操作
IT成长日记40 分钟前
【Hive入门】Hive分桶表深度解析:从哈希分桶到Join优化的完整指南
hive·hadoop·哈希算法·哈希分桶·join优化
和算法死磕到底3 小时前
ubantu18.04(Hadoop3.1.3)之Spark安装和编程实践
大数据·hadoop·pycharm·spark
菜鸟、上路3 小时前
Hadoop 集群扩容新增节点操作文档
大数据·hadoop·分布式
IT成长日记4 小时前
【Hive入门】Hive动态分区与静态分区:使用场景与性能对比完全指南
数据仓库·hive·hadoop·动态分区·静态分区
嘟嘟嘟嘟嘟嘟嘟.6 小时前
spark和hadoop之间的对比和联系
hadoop·spark
viperrrrrrrrrr712 小时前
大数据学习(112)-HIVE中的窗口函数
hive·sql·学习
酷爱码17 小时前
如何通过python连接hive,并对里面的表进行增删改查操作
开发语言·hive·python
Debug_TheWorld19 小时前
Hive学习
hive
元6331 天前
spark和hadoop之间的对比和联系
大数据·hadoop·spark