如何保证kafka生产者数据可靠性

ack参数的设置:

0: 生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1: 生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all) :生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0 ,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1 ,生产者发送过来数据 Leader 应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
网安INF40 分钟前
CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)
java·web安全·网络安全·kafka·漏洞·jndi注入
观无2 小时前
redis分布式锁
数据库·redis·分布式
颜淡慕潇2 小时前
Redis 实现分布式锁:深入剖析与最佳实践(含Java实现)
java·redis·分布式
啾啾Fun3 小时前
【Java微服务组件】分布式协调P4-一文打通Redisson:从API实战到分布式锁核心源码剖析
java·redis·分布式·微服务·lua·redisson
记得开心一点嘛11 小时前
使用MinIO搭建自己的分布式文件存储
分布式·spring cloud·minio
纪元A梦12 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
HAPPY酷15 小时前
Kafka 和Redis 在系统架构中的位置
redis·kafka·系统架构
忆雾屿15 小时前
云原生时代 Kafka 深度实践:06原理剖析与源码解读
java·后端·云原生·kafka
TCChzp17 小时前
Kafka入门-消费者
分布式·kafka
FakeOccupational20 小时前
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 & 定向转发机制
笔记·分布式·p2p