如何保证kafka生产者数据可靠性

ack参数的设置:

0: 生产者发送过来的数据,不需要等数据落盘应答

假如发送了Hello 和 World两个信息,Leader直接挂掉,数据就会丢失

生产者 ---> Kafka集群 一放进去就跑

数据可靠性分析:丢数

1: 生产者发送过来的数据,Leader收到数据后应答

生产者把数据发送给了Leader,Leader保存成功,应答完毕,此时生产者就以为数据发送成功了,但是此时,Leader挂了,但是Follower 并没有同步数据过来,Follower此时变成了Leader, 此时的Leader就没有Hello这个数据了,数据丢失了。

-1(all) :生产者发送过来的数据,Leader和ISR队列里面的所有节点收齐数据后应答。

Leader收到数据,所有Follower都开始同步数据, 但有一个Follower,因为某种故障,迟迟不能与Leader进行同步,那这个问题怎么解决呢?

解决方案:

Leader维护了一个动态的in-sync replica set(ISR),意为和 Leader保持同步的Follower+Leader集合(leader:0,isr:0,1,2)。

如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值由replica.lag.time.max.ms参数设定,默认30s。例如2超时,(leader:0, isr:0,1)。 这样就不用等长期联系不上或者已经故障的节点。

数据可靠性分析:

如果分区副本设置为1个(只有一个leader),或者ISR里应答的最小副本数量 ( min.insync.replicas 默认为1)设置为1,和ack=1的效果是一样的,仍然有丢数的风险(leader:0,isr:0)。

数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2

副本数是2,但是ISR中不一定有两个,因为会挂掉。

可靠性总结:

acks=0 ,生产者发送过来数据就不管了,可靠性差,效率高;

acks=1 ,生产者发送过来数据 Leader 应答,可靠性中等,效率中等;

acks=-1,生产者发送过来数据Leader和ISR队列里面所有Follwer应答,可靠性高,效率低;

在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;

acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。

相关推荐
写bug写bug5 小时前
分布式锁的使用场景和常见实现(下)
分布式·后端·面试
喂完待续17 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
yh云想1 天前
《从入门到精通:Kafka核心原理全解析》
分布式·kafka
武子康1 天前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
ModelWhale1 天前
“大模型”技术专栏 | 浅谈基于 Kubernetes 的 LLM 分布式推理框架架构:概览
分布式·kubernetes·大模型
愿天堂没有C++1 天前
C++——分布式
分布式
UPToZ1 天前
【Docker】搭建一个高性能的分布式对象存储服务 - MinIO
分布式·docker·容器
前端世界2 天前
鸿蒙任务调度机制深度解析:优先级、时间片、多核与分布式的流畅秘密
分布式·华为·harmonyos
A尘埃2 天前
金融项目高可用分布式TCC-Transaction(开源框架)
分布式·金融·开源
夜影风2 天前
RabbitMQ核心架构与应用
分布式·架构·rabbitmq