5G NR Bandwidth Part (BWP)

BWP

  • [𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡 𝐏𝐚𝐫𝐭 (𝐁𝐖𝐏) 𝐢𝐧 5𝐆](#𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡 𝐏𝐚𝐫𝐭 (𝐁𝐖𝐏) 𝐢𝐧 5𝐆)
  • [𝐖𝐡𝐚𝐭 𝐢𝐬 𝐁𝐖𝐏?](#𝐖𝐡𝐚𝐭 𝐢𝐬 𝐁𝐖𝐏?)
  • [BWP Configuration Properties](#BWP Configuration Properties)
  • [BWP Activation/Deactivation and Switching](#BWP Activation/Deactivation and Switching)
  • [Why BWP is Required?](#Why BWP is Required?)

https://www.techplayon.com/5g-nr-bandwidth-part-bwp/

𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡 𝐏𝐚𝐫𝐭 (𝐁𝐖𝐏) 𝐢𝐧 5𝐆

With evolving telecom Generations to 5G, we've seen a big leap in network capabilities, especially in terms of bandwidth. While 4G/LTE can handle up to 20MHz of bandwidth, 5G NR can go up to 400MHz per carrier. However, not all devices, known as User Equipment (UE), can use such large bandwidths efficiently. To solve this problem, 5G introduces Bandwidth Parts (BWP).

𝐖𝐡𝐚𝐭 𝐢𝐬 𝐁𝐖𝐏?

A Bandwidth Part (BWP) is a contiguous set of physical resource blocks (PRBs) on a given carrier. These RBs are selected from a contiguous subset of the common resource blocks for a given numerology (u). It is denoted by BWP. Each BWP defined for a numerology can have following three different parameters.

  • Subcarrier spacing
  • Symbol duration
  • Cyclic prefix (CP) length

BWP Configuration Properties

  • UE can be configured with maximum 4 BWP for Downlink and Uplink but at a given point of time only one BWP is active for downlink and one for uplink.
  • BWP concept enable UEs to operate in narrow bandwidth and when user demands more data (bursty traffic) it can inform gNB to enable wider bandwidth.
  • When gNB configures a BWP , it includes parameters: BWP Numerology (u) BWP bandwidth size Frequency location (NR-ARFCN), CORESET (Control Resource Set)
  • With respect to Downlink ,UE is not expected to receive PDSCH, PDCCH, CSI-RS, or TRS outside an active bandwidth part
  • Each DL BWP include at least one CORESET with UE Specific Search Space (USS) while Primary carrier at least one of the configured DL BWPs includes one CORESET with common search space (CSS)
  • With respect to uplink, UE shall not transmit PUSCH or PUCCH outside an active bandwidth part
  • UEs are expected to receive and transmit only within the frequency range configured for the active BWPs with the associated numerologies. However, there are exceptions; a UE may perform Radio Resource Management (RRM) measurement or transmit sounding reference signal (SRS) outside of its active BWP via measurement gap

BWP Activation/Deactivation and Switching

According to 38.321-5.15 Bandwidth Part (BWP) operation, BWP selection (or BWP switching) can be done by several different ways as listed below.

  • Dedicated RRC Signaling
  • Over PDCCH channel Downlink control information (DCI)- DCI 0_1 (UL Grant) and DCI 1_0 (DL Scheduling)
  • By bwp-inactivityTimer -- ServingCellConfig.bwp-InactivityTimer
  • By MAC CE (Control Element)

DCI based mechanism, although more prompt than the one based on MAC CE, requires additional consideration for error case handling, i.e. the case when a UE fails to decode the DCI containing the BWP activation/deactivation command. To help to recover from such a DCI lost scanarios, the activation/deactivation of DL BWP (or DL/UL BWP pair for the case of unpaired spectrum) by means of timer (bwp-inactivityTimer) is also introduced. With this mechanism, if a UE is not scheduled for a certain amount of time, i.e. expiration of timer, the UE switches its active DL BWP (or DL/UL BWP pair) to the default one.

There is an initial active BWP for a UE during the initial access until the UE is explicitly configured with BWPs during or after RRC connection establishment. The initial active BWP is the default BWP, unless configured otherwise.

As per 3GPP Release 15, for a UE, there is at most one active DL BWP and at most one active UL BWP. The HARQ retransmission across different BWPs is supported when a UE's active BWP is switched.

Why BWP is Required?

A wider Bandwidth has direct impact on the peak and user experienced data rates, however users are not always demanding high data rate. The use of wide BW may imply higher idling power consumption both from RF and baseband signal processing perspectives. In regards to this , new concept of BWP has been introduced for 5G-NR provides a means of operating UEs with smaller BW than the configured CBW, which makes NR an energy efficient solution despite the support of wideband operation.

Alternatively, one may consider to schedule a UE such that it only transmits or receives within a certain frequency range. Compared to this approach, the difference with BWP is that the UE is not required to transmit or receive outside of the configured frequency range of the active BWP, which attributes power saving from the following aspects:

  • BWP concept reduce bandwidth processing requirement to transmit or receive narrow bandwidth
  • BWP enable RF-Baseband interface operation with a lower sampling rates
  • UE RF bandwidth adaptation can provide UE power saving at least if carrier bandwidth before adaptation is large.
相关推荐
通信小呆呆4 小时前
5G/6G时代的智能超表面:如何重构无线传播环境?
5g·重构·信息与通信·信号处理·超表面
OkarOu1 天前
5G边缘计算:重构物联网开发新范式
5g·重构·边缘计算
北极光SD-WAN组网1 天前
从0到1搭建某铝箔智慧工厂网络:5G与WiFi 6助力智能制造
网络·5g·制造
无线图像传输研究探索2 天前
无定位更安全:5G 高清视频终端的保密场景适配之道
5g·安全·音视频·无人机·5g单兵图传·单兵图传·无人机图传
拓端研究室4 天前
专题:2025电力行业5G工厂及绿色转型、市场机制研究报告|附100+份报告PDF、数据仪表盘汇总下载
5g·pdf
无线图像传输研究探索5 天前
如何将大疆无人机拍摄到的图像回传到应急指挥中心大屏?5G单兵图传轻松解决图传问题|伟博视讯
5g·无人机·无线图传·单兵图传·无人机图传
通信小呆呆7 天前
为什么同步是无线通信的灵魂?WiFi 与 5G 帧结构中的关键技术
算法·5g·wifi·信息与通信·同步
DreamLife☼9 天前
工业 5G + AI:智能制造的未来引擎
人工智能·5g·ai·制造·控制·工业·scada
zzc92111 天前
传统星型拓扑结构的5G,WiFi无线通信网络与替代拓扑结构自组网
5g·wifi·mesh·拓扑结构·ap·ad hoc·星型网络
无线图像传输研究探索13 天前
5G 三卡图传终端:应急救援管理的 “可视化指挥核心”
5g·无人机·无线图传·单兵图传·无人机图传