python的负数索引理解

在 Python 中,负数索引用于从序列(如列表、元组或张量)的末尾开始计数。负数索引的理解方式如下:

  • -1 表示序列的最后一个元素。
  • -2 表示序列的倒数第二个元素。
  • 以此类推。

例子:

假设我们有一个列表 list

python 复制代码
lst = [10, 20, 30, 40, 50]

使用负数索引可以访问列表中的元素:

  • lst[-1] 返回 50,即列表的最后一个元素。
  • lst[-2] 返回 40,即列表的倒数第二个元素。
  • lst[-3] 返回 30,即列表的倒数第三个元素。

在 Layer Normalization 的实现中,负数索引用于计算需要进行归一化的维度索引。

假设 self.normalized_shape[3, 4],则 len(self.normalized_shape)2

因此,range(len(self.normalized_shape)) 生成 [0, 1]

对于每个 i,计算 -(i+1)

  • i = 0 时,-(i+1) = -1,表示最后一个维度。
  • i = 1 时,-(i+1) = -2,表示倒数第二个维度。

因此,dims 的值为 [-1, -2],表示需要在最后两个维度上进行归一化。

结合实例讲解

假设我们有一个输入张量 x,其形状为 [2, 3, 4],即批量大小为 2,通道数为 3,每个通道有 4 个元素。我们希望在通道和空间维度上进行归一化。

python 复制代码
import torch

x = torch.randn(2, 3, 4)  # 输入张量的形状为 [2, 3, 4]
normalized_shape = [3, 4]

# 计算需要进行 LN 的维度索引 dims
dims = [-(i+1) for i in range(len(normalized_shape))]
print(dims)  # 输出 [-1, -2]

# 计算特征图对应维度的均值和方差
mean = x.mean(dim=dims, keepdims=True)
mean_x2 = (x**2).mean(dim=dims, keepdims=True)
var = mean_x2 - mean**2

# 对输入 x 进行归一化
x_norm = (x - mean) / torch.sqrt(var + 1e-5)
print(x_norm)

这个例子中:

  • dims 的值为 [-1, -2],表示需要在最后两个维度上进行归一化。
  • meanvar 分别是特征图对应维度的均值和方差。
  • x_norm 是归一化后的张量。

通过使用负数索引,我们可以方便地指定需要进行归一化的维度,而不需要显式地计算维度的索引。

相关推荐
喵手3 小时前
Python爬虫实战:京东/淘宝搜索多页爬虫实战 - 从反爬对抗到数据入库的完整工程化方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·京东淘宝页面数据采集·反爬对抗到数据入库·采集结果csv导出
lsx2024063 小时前
Python3 SMTP发送邮件教程
开发语言
懈尘3 小时前
从 Java 1.7 到 Java 21:逐版本深入解析新特性与平台演进
java·开发语言
凉辰3 小时前
使用uni.createInnerAudioContext()播放指定音频(踩坑分享功能)
开发语言·javascript·音视频
hello 早上好3 小时前
05_Java 类加载过程
java·开发语言
B站_计算机毕业设计之家3 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法
PPPPPaPeR.3 小时前
光学算法实战:深度解析镜片厚度对前后表面折射/反射的影响(纯Python实现)
开发语言·python·数码相机·算法
橙露3 小时前
Java并发编程进阶:线程池原理、参数配置与死锁避免实战
java·开发语言
froginwe113 小时前
C 标准库 - `<float.h>`
开发语言
JaydenAI3 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain