TSMamba:基于Mamba架构的高效时间序列预测基础模型

在当今数据驱动的世界中,时间序列预测在多个领域扮演着关键角色。从医疗保健分析师预测患者流量,到金融分析师预测股市趋势,再到气候科学家预测环境变化,准确的时间序列预测都至关重要。然而,传统的预测模型面临着三个主要挑战:

  1. 数据获取难度:对于新兴模式的预测,相关训练数据往往难以获取或收集。例如,LOTSA(最大的公开时间序列数据集)仅包含约270亿个时间点,而相比之下,NLP领域的数据集如RedPajama-Data-v2包含数十万亿个标记。
  2. 泛化能力受限:传统模型难以在不同领域和应用场景之间迁移,每个新场景都需要重新训练模型。
  3. 数据效率低下:在训练数据有限的情况下容易出现过拟合现象。

论文创新与改进

1. 架构创新

TSMamba对传统Transformer架构进行了重大改进:

  1. 线性复杂度实现:- 传统Transformer:输入长度的二次方复杂度- TSMamba:实现线性复杂度,显著提升处理效率- 通过选择性状态空间实现信息的高效过滤与保留
  2. 双向编码器设计:- 前向编码器:捕捉因果关系依赖- 后向编码器:提取反向时间关系- 时间卷积模块:对齐前向和后向表示

2. 两阶段迁移学习方法

TSMamba采用创新的两阶段迁移学习方法,有效解决了训练数据不足的问题:

第一阶段 - 骨干网络训练:

  • 利用预训练的Mamba语言模型初始化
  • 通过分片式自回归预测优化骨干网络
  • 训练输入嵌入以适应时间序列数据

第二阶段 - 长期预测优化:

  • 恢复完整TSMamba架构
  • 加载第一阶段训练的骨干网络和嵌入层
  • 使用差异化学习率策略进行训练

3. 通道压缩注意力机制

为处理多变量时间序列的复杂性,TSMamba引入了创新的通道压缩注意力模块:

该模块包含四个关键步骤:

  1. 时间卷积:对齐不同通道的时间维度
  2. 通道压缩:将通道数从D压缩到⌈log₂(D)⌉
  3. 注意力计算:在压缩通道维度上提取依赖关系
  4. 通道恢复:将压缩表示映射回原始通道数

这种设计既保证了对跨通道依赖关系的有效捕捉,又避免了过度拟合的风险。

实验评估与性能分析

实验设置

TSMamba在实验中采用以下配置:

  • 3层编码器
  • 768维嵌入大小
  • 固定512长度的输入序列

实验评估分为两个主要场景:零样本预测和全量数据训练。

零样本预测结果

基准数据集评估

在ETTm2和Weather两个标准数据集上进行了全面测试:

  1. 预测周期:- 短期:96小时- 中期:192小时- 长期:336小时、720小时
  2. 评估指标:- 均方误差(MSE)- 平均绝对误差(MAE)
关键发现
  • 在长期预测(336和720小时)场景表现突出
  • 与使用更大规模预训练数据的模型相比保持竞争力
  • 在平均性能上达到领先水平,尤其是在数据效率方面

全量数据训练结果

实验数据集

在三个主要数据集上进行了详细评估:

  • ILI (流感数据集)
  • ETTm2 (电力负载数据集)
  • Weather (气象数据集)
性能对比

主要结果:

  1. 整体性能:- 相比GPT4TS提升了15%的性能- 超越了专门的时间序列预测模型PatchTST- 在大多数预测长度上保持最优表现
  2. 分数据集表现:- ETTm2数据集:平均MSE降低至0.257,MAE降低至0.317- Weather数据集:平均MSE达到0.222,MAE达到0.258- ILI数据集:显著优于所有基准模型
  3. 稳定性分析:- 在不同预测长度下保持稳定表现- 预测结果的方差较小,显示出较高的可靠性

消融研究

为验证各个模块的有效性,进行了详细的消融实验:

  1. 通道压缩注意力模块的影响:- 完整模型vs去除压缩机制- 不同压缩比率的效果对比
  2. 两阶段训练策略的贡献:- 单阶段vs两阶段训练的效果对比- 不同预训练策略的影响
  3. 双向编码器的作用:- 仅使用前向编码器的效果- 双向编码器带来的性能提升

这些实验结果证实了TSMamba各个创新组件的必要性和有效性。

技术细节

论文没给源代码,我们按照论文的思路进行一个简单的复现

关键技术实现

1. 模型核心组件
预处理模块
 classPreprocessModule(nn.Module):
     def__init__(self):
         super().__init__()
         # 实例归一化
         self.norm=ReverseInstanceNorm()
         # 1D卷积实现输入嵌入
         self.embedding=nn.Conv1d(
             in_channels=1,
             out_channels=model_dim,
             kernel_size=patch_length,
             stride=patch_length
         )
通道压缩注意力模块
 classChannelCompressedAttention(nn.Module):
     def__init__(self, dim, num_channels):
         super().__init__()
         # 时间卷积层
         self.temporal_conv=nn.Conv1d(dim, dim, kernel_size=3, padding=1)
         # 通道压缩
         compressed_channels=ceil(log2(num_channels))
         self.channel_compress=nn.Conv1d(num_channels, compressed_channels, 1)
         # 注意力层
         self.attention=nn.MultiheadAttention(dim, num_heads=8)
         # 通道恢复
         self.channel_expand=nn.Conv1d(compressed_channels, num_channels, 1)
2. 优化策略
  1. 两阶段训练流程:- 第一阶段:优化骨干网络- 第二阶段:微调预测头- 使用差异化学习率

  2. 损失函数设计

    defhuber_loss(y_pred, y_true, delta=1.0):
    residual=torch.abs(y_pred-y_true)
    quadratic_loss=0.5residual.pow(2)
    linear_loss=delta
    residual-0.5*delta.pow(2)
    returntorch.mean(torch.where(residual<=delta,
    quadratic_loss,
    linear_loss))

总结

TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。其主要贡献包括:

  1. 实现了线性复杂度的计算效率
  2. 提出了有效的两阶段迁移学习方法
  3. 设计了创新的通道压缩注意力机制

这些创新为时间序列预测领域提供了新的研究方向和实践指导。随着技术的不断发展,我们期待看到更多基于TSMamba的改进和应用,推动时间序列预测技术继续向前发展。

论文:

https://avoid.overfit.cn/post/7813f935a8584f4199d146bce348f787

相关推荐
hunter2062066 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z8 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
盼小辉丶6 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云6 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
AI街潜水的八角7 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山9 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造