golang分布式缓存项目 Day2 单机并发缓存

:该项目原作者:https://geektutu.com/post/geecache-day1.html。本文旨在记录本人做该项目时的一些疑惑解答以及部分的测试样例以便于本人复习。

支持并发读写

接下来我们使用 sync.Mutex 封装 LRU 的几个方法,使之支持并发的读写。在这之前,我们抽象了一个只读数据结构 ByteView 用来表示缓存值,是 GeeCache 主要的数据结构之一。

go 复制代码
package project

// A ByteView holds an immutable view of bytes.
type ByteView struct {
	b []byte
}

// Len returns the view's length
func (v ByteView) Len() int {
	return len(v.b)
}

// ByteSlice returns a copy of the data as a byte slice.
func (v ByteView) ByteSlice() []byte {
	return cloneBytes(v.b)
}

// String returns the data as a string, making a copy if necessary.
func (v ByteView) String() string {
	return string(v.b)
}

func cloneBytes(b []byte) []byte {
	c := make([]byte, len(b))
	copy(c, b)
	return c
}
  • ByteView 只有一个数据成员,b []byte,b 将会存储真实的缓存值。选择 byte类型是为了能够支持任意的数据类型的存储,例如字符串、图片等。

  • 实现 Len() int 方法,我们在 lru.Cache的实现中,要求被缓存对象必须实现 Value 接口,即 Len() int

    方法,返回其所占的内存大小。

  • b 是只读的,使用 ByteSlice() 方法返回一个拷贝,防止缓存值被外部程序修改。

接下来就可以为 lru.Cache 添加并发特性了。

go 复制代码
package project

import (
	"goLang/project/lru"
	"sync"
)

type cache struct {
	mu         sync.Mutex
	lru        *lru.Cache
	cacheBytes int64
}

func (c *cache) add(key string, value ByteView) {
	c.mu.Lock()
	defer c.mu.Unlock()
	if c.lru == nil {
		c.lru = lru.New(c.cacheBytes, nil)
	}
	c.lru.Add(key, value)
}

func (c *cache) get(key string) (value ByteView, ok bool) {
	c.mu.Lock()
	defer c.mu.Unlock()
	if c.lru == nil {
		return
	}

	if v, ok := c.lru.Get(key); ok {
		return v.(ByteView), ok
	}

	return
}···
  • cache.go 的实现非常简单,实例化 lru,封装 get 和 add 方法,并添加互斥锁 mu。
  • 在 add 方法中,判断了 c.lru 是否为 nil,如果等于 nil 再创建实例。这种方法称之为延迟初始化(Lazy Initialization),一个对象的延迟初始化意味着该对象的创建将会延迟至第一次使用该对象时。主要用于提高性能,并减少程序内存要求。

主体结构Group

Group 是 GeeCache 最核心的数据结构,负责与用户的交互,并且控制缓存值存储和获取的流程。

我们将在 geecache.go 中实现主体结构 Group,那么 GeeCache 的代码结构的雏形已经形成了。

回调Getter

我们思考一下,如果缓存不存在,应从数据源(文件,数据库等)获取数据并添加到缓存中。GeeCache 是否应该支持多种数据源的配置呢?不应该,一是数据源的种类太多,没办法一一实现;二是扩展性不好。如何从源头获取数据,应该是用户决定的事情,我们就把这件事交给用户好了。因此,我们设计了一个回调函数(callback),在缓存不存在时,调用这个函数,得到源数据。

go 复制代码
// A Getter loads data for a key.
type Getter interface {
	Get(key string) ([]byte, error)
}

// A GetterFunc implements Getter with a function.
type GetterFunc func(key string) ([]byte, error)

// Get implements Getter interface function
func (f GetterFunc) Get(key string) ([]byte, error) {
	return f(key)
}
  • 定义接口 Getter 和 回调函数 Get(key string)([]byte, error),参数是 key,返回值是[]byte。
  • 定义函数类型 GetterFunc,并实现 Getter 接口的 Get 方法。
  • 函数类型实现某一个接口,称之为接口型函数,方便使用者在调用时既能够传入函数作为参数,也能够传入实现了该接口的结构体作为参数。

我们可以写一个测试用例来保证回调函数能够正常工作。

go 复制代码
func TestGetter(t *testing.T) {
	var f Getter = GetterFunc(func(key string) ([]byte, error) {
		return []byte(key), nil
	})

	expect := []byte("key")
	if v, _ := f.Get("key"); !reflect.DeepEqual(v, expect) {
		t.Errorf("callback failed")
	}
}

Group 的定义

接下来是最核心数据结构 Group 的定义:

go 复制代码
// A Group is a cache namespace and associated data loaded spread over
type Group struct {
	name      string
	getter    Getter
	mainCache cache
}

var (
	mu     sync.RWMutex
	groups = make(map[string]*Group)
)

// NewGroup create a new instance of Group
func NewGroup(name string, cacheBytes int64, getter Getter) *Group {
	if getter == nil {
		panic("nil Getter")
	}
	mu.Lock()
	defer mu.Unlock()
	g := &Group{
		name:      name,
		getter:    getter,
		mainCache: cache{cacheBytes: cacheBytes},
	}
	groups[name] = g
	return g
}

// GetGroup returns the named group previously created with NewGroup, or
// nil if there's no such group.
func GetGroup(name string) *Group {
	mu.RLock()
	g := groups[name]
	mu.RUnlock()
	return g
}
  • 一个 Group 可以认为是一个缓存的命名空间,每个 Group 拥有一个唯一的名称 name。比如可以创建三个
    Group,缓存学生的成绩命名为 scores,缓存学生信息的命名为 info,缓存学生课程的命名为 courses。
  • 第二个属性是 getter Getter,即缓存未命中时获取源数据的回调(callback)。
  • 第三个属性是 mainCache cache,即一开始实现的并发缓存。 构建函数 NewGroup 用来实例化 Group,并且将group 存储在全局变量 groups 中。
  • GetGroup 用来特定名称的 Group,这里使用了只读锁 RLock(),因为不涉及任何冲突变量的写操作。

Group 的 Get 方法

接下来是 GeeCache 最为核心的方法 Get:

go 复制代码
// Get value for a key from cache
func (g *Group) Get(key string) (ByteView, error) {
	if key == "" {
		return ByteView{}, fmt.Errorf("key is required")
	}

	if v, ok := g.mainCache.get(key); ok {
		log.Println("[GeeCache] hit")
		return v, nil
	} else {
		log.Println("[cache] unhit")
		return 	g.load(key)
	}
}

func (g *Group) load(key string) (value ByteView, err error) {
	return g.getLocally(key)
}

func (g *Group) getLocally(key string) (ByteView, error) {
	bytes, err := g.getter.Get(key)
	if err != nil {
		return ByteView{}, err

	}
	value := ByteView{b: cloneBytes(bytes)}
	g.populateCache(key, value)
	return value, nil
}

func (g *Group) populateCache(key string, value ByteView) {
	g.mainCache.add(key, value)
}
  • Get 方法实现了上述所说的流程 ⑴ 和 ⑶。
  • 流程 ⑴ :从 mainCache 中查找缓存,如果存在则返回缓存值。
  • 流程 ⑶ :缓存不存在,则调用 load 方法,load 调用 getLocally(分布式场景下会调用 getFromPeer 从其他节点获取),getLocally 调用用户回调函数 g.getter.Get() 获取源数据,并且将源数据添加到缓存 mainCache 中(通过 populateCache 方法)

至此,这一章节的单机并发缓存就已经完成了。

PS

为什么load方法定义为调用getlocally方法,不能直接调用getlocally方法吗?

:分布式场景下,load 会先从远程节点获取 getFromPeer失败了再回退到 getLocally,设计时预留了。(为后面的分布式场景下设计预留空间)

测试

首先,用一个 map 模拟耗时的数据库。

go 复制代码
var db = map[string]string{
	"Tom":  "630",
	"Jack": "589",
	"Sam":  "567",
}

创建 group 实例,并测试 Get 方法

go 复制代码
func TestGet(t *testing.T) {
	loadCounts := make(map[string]int, len(db))
	gee := NewGroup("scores", 2<<10, GetterFunc(
		func(key string) ([]byte, error) {
			log.Println("[slow db] search key", key)
			if v, ok := db[key]; ok {
				if _, ok := loadCounts[key]; !ok {
					loadCounts[key] = 0
				}
				loadCounts[key] += 1
				return []byte(v), nil
			}
			return nil, fmt.Errorf("%s not exist", key)
		}))

	for k, v := range db {
		if view, err := gee.Get(k); err != nil || view.String() != v {
			t.Fatal("failed to get value of Tom")
		} // load from callback function
		if _, err := gee.Get(k); err != nil || loadCounts[k] > 1 {
			t.Fatalf("cache %s miss", k)
		} // cache hit
	}

	if view, err := gee.Get("unknown"); err == nil {
		t.Fatalf("the value of unknow should be empty, but %s got", view)
	}
}
  • 在这个测试用例中,我们主要测试了 2 种情况
  • 1)在缓存为空的情况下,能够通过回调函数获取到源数据
  • 2)在缓存已经存在的情况下,是否直接从缓存中获取,为了实现这一点,使用 loadCounts 统计某个键调用回调函数的次数,如果次数大于1,则表示调用了多次回调函数,没有缓存。

测试结果如下:

上述测试的基本逻辑

第一次搜索db中的键-->不存在,打印[cache] unhit,并调用load(key) ->再调用getlocally(key)方法 ->再调用Getter接口的Get方法,也就是GetterFunc函数,打印[slow db] search key...->调用populateCache->调用add方法将键值对加入缓存池中 ->第二次搜索db中的键 ->存在,打印[Cache] hit-->结束一次循环

相关推荐
凡人的AI工具箱7 小时前
15分钟学 Go 第 49 天 :复杂项目开发
开发语言·人工智能·后端·算法·golang
东方巴黎~Sunsiny7 小时前
当kafka消费的数据滞后1000条时,打印告警信息
分布式·kafka·linq
sj11637394037 小时前
Kafka新节点加入集群操作指南
分布式·kafka
东方巴黎~Sunsiny7 小时前
kafka消费数据太慢了,给优化下
分布式·kafka·linq
杜杜的man8 小时前
【go从零单排】Random Numbers、Number Parsing
开发语言·python·golang
东方巴黎~Sunsiny9 小时前
详解kafka消息发送重试机制的案例
分布式·kafka·linq
aiee10 小时前
Golang时间函数
开发语言·后端·golang
还是转转10 小时前
Go开发指南- Goroutine
开发语言·golang
蜗牛沐雨10 小时前
Go语言中的`io.Pipe`:实现进程间通信的利器
开发语言·后端·golang·进程通信·pipe
杜杜的man10 小时前
【go从零单排】泛型(Generics)、链表
开发语言·链表·golang