基于OLAP湖仓一体架构,火山引擎ByteHouse助力企业降本提效

在数字化转型的浪潮中,企业对数据处理能力的要求日益提高。

过去,数据湖和数据仓库分别拥有两套独立的管理体系,这导致维护成本高昂,研发周期漫长。为了加强数据端到端的链路整合,构建一套低成本、高性能的数据湖仓一体分析能力成为越来越多企业的需求。

作为火山引擎推出的一款云原生数据仓库,ByteHouse 基于 ClickHouse 技术路线优化和演进,已具备实时数据分析、海量数据离线分析能力,便捷的弹性扩缩容、极致分析性能以及丰富的企业级特性,在金融、游戏、泛互等领域加速企业数字化转型。为了进一步提升使用体验、降低运维成本,ByteHouse 构建了高性能、功能全面的湖仓一体能力,支持对多种数据湖开放格式进行读写,并通过优化器和 Schema 动态感知增强性能,确保湖仓间数据高效流动。

据火山引擎 ByteHouse 产品负责人李群介绍:"ByteHouse 湖仓一体能力具备快、通、全三大特点,在保障湖仓数据联邦的分析高性能的同时,实现湖仓双向读写,精简了整体架构,还基于 Multi-Catalog 进行多源数据管理,提供更丰富、更全面的一体化能力。"

首先,ByteHouse 湖仓一体关键能力之一在于"快"。在当今复杂的商业环境下,企业每天需要面临大量决策,而高效的数据反馈可以提升企业决策效率和准确度。从 Native Reader、IO 优化、多级 Cache、物化视图、优化器五个方面,ByteHouse 针对性能进行了大量优化。例如,在并发支持和复杂模型处理上,ByteHouse 则通过自研优化器等手段优化了 ClickHouse 的不足,在经典的星星、雪花负载模型下已得到验证。从数据效果上看,ByteHouse 在 SSB Flat 100G 、TPC-DS 100G 测试中的表现,基本高于行业同类型产品。

其次是"通"。ByteHouse 采用 ZeroETL 理念,实现了湖与仓之间的双向互通,支持读取和写入数据,简化数据架构。具体而言,ByteHouse 湖-表格式在 EMR 上运行,支持对 Hive、Hudi、Paimon、Iceberg 等多种数据源的外表读操作。而湖-文件格式则支持在对象存储上进行 CSV、JSON/JSONB、Parquet、ORC 等多种格式的读写操作。此外,ByteHouse 还提供了 Spark、Flink 等 Connector,方便企业将 ByteHouse 与其他大数据处理框架进行集成,实现更加高效的数据处理和分析。

最后是"全"。基于 Multi Catalog 多源数据管理能力,ByteHouse 具备全域数据一张图的能力。例如,从治理角度,展示全域血缘、全域治理数据;从管控角度,展示全域多租户管理、全域权限管控数据;从合规角度,展示全域合规性建设数据等,助力企业从全局视角更好洞察和分析高价值数据,提升数据资产化能力。

除了湖仓一体化,ByteHouse 还从 TP、AP 一体化,仓、市一体化,AP、AI 一体化方面,逐步实现 ZeroETL 轻量化数据架构。通过"四个一体化"策略,不仅让数仓更轻快,数据免搬迁,还能保障数据质量,实现智能运维。

目前,ByteHouse"四个一体化"策略已经在抖音集团内部 BI 平台落地和验证,在报表查询、管理驾驶舱、指标平台等业务场景中,将性能至少提升 2 倍,成本降低 33%。

相关推荐
Datawhale8 小时前
谈大模型到Agent应用,火山引擎Force大会开发者论坛详细总结
火山引擎
程序员洲洲11 小时前
【TextIn大模型加速器 + 火山引擎】用Coze+TextIn+飞书搭建全自动论文处理AI工作流
火山引擎·coze·ai工作流·textin·textin大模型加速器
小黄人202515 小时前
【TextIn大模型加速器 + 火山引擎】用RAG来完成专业知识解答功能
火山引擎·扣子·textin
糖炒狗子17 小时前
Textin模型加速器+火山引擎打造商业计划书智能体
人工智能·火山引擎
火山引擎开发者社区2 天前
AI 时代的“无限”记忆:火山引擎 TOS Vectors 开启向量存储新范式
人工智能·火山引擎
莫叫石榴姐2 天前
Doris为2.1版本,但json_each不可以用解决方法
数据仓库·json
JH灰色2 天前
【大模型】-火山引擎扣子
火山引擎
老徐电商数据笔记3 天前
技术复盘第八篇:从“数据烟囱”到“能力引擎”:中型电商数仓重构实战手册
大数据·数据仓库·重构·数据中台·用户画像·技术面试
青木川崎3 天前
hive实战
数据仓库·hive·hadoop
是阿威啊3 天前
【第三站】本地虚拟机部署hive集群
linux·数据仓库·hive·hadoop·分布式