题目链接
https://www.luogu.com.cn/problem/P1725
思路
我们令 d p [ i ] dp[i] dp[i]表示琪露诺移动到第 i i i个格子时能够获得的最大冰冻指数。
显然,状态转移方程为: d p [ i ] = m a x ( d p [ i ] , d p [ k ] + a [ i ] ) dp[i] = max(dp[i],dp[k]+a[i]) dp[i]=max(dp[i],dp[k]+a[i]),其中 k + L ≤ i k+L \le i k+L≤i并且 ( k + R ≥ i ) (k+R \ge i) (k+R≥i)。
因为 L L L和 R R R的值很大,所以我们可以使用线段树来进行优化。
使用线段树维护区间 d p [ i ] dp[i] dp[i]的最大值,每计算出一个新的 d p [ i ] dp[i] dp[i],就将其扔到线段树中。我们令编号从 1 1 1开头,则最后的答案为 d p [ n + 2 ] dp[n+2] dp[n+2]。
代码
cpp
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define double long double
typedef long long i64;
typedef unsigned long long u64;
typedef pair<int, int> pii;
const int N = 2e5 + 5, M = 1e6 + 5;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f3f3f3f3f;
int n, l, r;
int a[N], dp[N];
struct segmenttree
{
struct node
{
int l, r, maxx, tag;
};
vector<node>tree;
segmenttree(): tree(1) {}
segmenttree(int n): tree(n * 4 + 1) {}
void pushup(int u)
{
auto &root = tree[u], &left = tree[u << 1], &right = tree[u << 1 | 1];
root.maxx = max(left.maxx, right.maxx);
}
void pushdown(int u)
{
auto &root = tree[u], &left = tree[u << 1], &right = tree[u << 1 | 1];
if (root.tag)
{
left.tag = root.tag;
right.tag = root.tag;
left.maxx = root.tag;
right.maxx = root.tag;
root.tag = 0;
}
}
void build(int u, int l, int r)
{
auto &root = tree[u];
root = {l, r};
if (l == r)
{
root.maxx = -inf;
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void modify(int u, int l, int r, int val)
{
auto &root = tree[u];
if (root.l >= l && root.r <= r)
{
root.maxx = val;
root.tag = val;
return;
}
pushdown(u);
int mid = root.l + root.r >> 1;
if (l <= mid) modify(u << 1, l, r, val);
if (r > mid) modify(u << 1 | 1, l, r, val);
pushup(u);
}
int query(int u, int l, int r)
{
auto &root = tree[u];
if (root.l >= l && root.r <= r)
{
return root.maxx;
}
pushdown(u);
int mid = root.l + root.r >> 1;
int res = -inf;
if (l <= mid) res = query(u << 1, l, r);
if (r > mid) res = max(res, query(u << 1 | 1, l, r));
return res;
}
};
void solve()
{
cin >> n >> l >> r;
fill(dp, dp + 1 + n + 2, -inf);
for (int i = 1; i <= n + 1; i++)
{
cin >> a[i];
}
segmenttree smt(n + 1);
smt.build(1, 1, n + 1);
dp[1] = a[1];
smt.modify(1, 1, 1, dp[1]);
for (int i = 2; i <= n + 1; i++)
{
if (i - l < 1)
{
dp[i] = -inf;
continue;
}
dp[i] = max(dp[i], smt.query(1, max(i - r, 1ll), max(i - l, 1ll)) + a[i]);
smt.modify(1, i, i, dp[i]);
}
//n+2表示对岸,包括>n+1的所有格子,所以要特殊处理。
dp[n + 2] = smt.query(1, max(n + 2 - r, 1ll), max(n + 2 - 1, 1ll));
cout << dp[n + 2] << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int test = 1;
// cin >> test;
for (int i = 1; i <= test; i++)
{
solve();
}
return 0;
}