FlinkPipelineComposer 详解

FlinkPipelineComposer 详解

原文

背景

在flink-cdc 3.0中引入了pipeline机制,提供了除Datastream api/flink sql以外的一种方式定义flink 任务

通过提供一个yaml文件,描述source sink transform等主要信息

由FlinkPipelineComposer解析,自动调用DataStream api进行构建

官方样例

复制代码
 source:
     type: mysql
     hostname: localhost
     port: 3306
     username: root
     password: 123456
     tables: app_db.\.*

   sink:
     type: doris
     fenodes: 127.0.0.1:8030
     username: root
     password: ""

   pipeline:
     name: Sync MySQL Database to Doris
     parallelism: 2

目前可以通过source配置的源只有mysql 和 values

values是调试用的,所以可以说当前这个功能是专门为"mysql同步数据到各个sink"的场景使用的

目前可以使用的sink有

  1. doris
  2. elasticsearch
  3. kafka
  4. paimon
  5. starrocks
  6. values

FlinkPipelineComposer

我们以mysql -> values来观察 FlinkPipelineComposer 是如何通过读取yaml文件的定义来构建DataStream的

values会将mysql产生的cdc消息打印到stdout上

复制代码
################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:
 type: mysql
 hostname: x.x.x.x
 port: 3306
 username: username
 password: password
 tables: test.t1
 server-id: 5400-5404
 server-time-zone: UTC+8

sink:
  type: values
  name: values Sink

pipeline:
 name: Sync Mysql Database to Values
 parallelism: 2

首先来观察一下这个任务提交到flink集群后具体的链路构成

结合官方给出的架构

可以看出,"一个source,一个sink"的yaml定义,最终会生成5个operator

  1. Souce: Flink CDC Event Source: mysql
  2. SchemaOperator
  3. PrePartition

-------------- shuffle --------------

  1. PostPartion
  2. Sink Writer: values Sink

负责

  1. 创建枚举器
  2. 创建reader
  3. 枚举split分发给reader
  4. reader读取数据生成事件

SchemaOperator

负责和JobMaster上的coodinator沟通,执行schema evolution 相关逻辑,见Flink CDC Schema Evolution 详解

PrePartition

负责

  1. 广播FlushEvent
  2. 广播SchemaChangeEvent
  3. shuffle普通消息到下游

PostPartion

Sink Writer: values Sink

写入下游,values sink当前到实现是打印到stdout

源码解析

接下来分析,FlinkPipelineComposer 读取 yaml 构造DataStream的细节

CliFrontend#main

CliFrontend.java:54

args

createExecutor 创建 executor CliFrontend.java:76

调用CliExecutor#run CliExecutor.java:70

看一下解析得到的pipelineDef

这里已经从yaml文件中解析出了source和sink的配置了

composer.compose 调用compose方法开始使用DataStream api进行构建

FlinkPipelineComposer.java:92 FlinkPipelineComposer#compose

声明了5个translator,其中第一个sourceTranslator会生成DataStream<Event> stream,而其他的translator基于这个stream作为input,调用transform方法,放入对应阶段的operator

复制代码
DataSourceTranslator sourceTranslator = new DataSourceTranslator();
...
TransformTranslator transformTranslator = new TransformTranslator();
...
SchemaOperatorTranslator schemaOperatorTranslator =...
...
DataSinkTranslator sinkTranslator = new DataSinkTranslator();
...
PartitioningTranslator partitioningTranslator = new PartitioningTranslator();
...

translate的调用顺序如下

复制代码
DataStream<Event> stream =
                sourceTranslator.translate(
                  ...
stream =
                transformTranslator.translatePreTransform(
                  ...
stream =
                transformTranslator.translatePostTransform(
                  ...
stream =
                schemaOperatorTranslator.translate(
                  ...
stream =
                partitioningTranslator.translate(
                  ...
sinkTranslator.translate(
                pipelineDef.getSink(), stream, dataSink, schemaOperatorIDGenerator.generate());

return new FlinkPipelineExecution(env...)
                  ...

逐一说明

  1. sourceTranslator.translate 通过source名字获取sourceProvider,关联到stream中
  • sourceProvider.getSource ->
    • MysqlSource ->
      • createReader
      • createEnumerator
  1. stream = transformTranslator.translatePreTransform

    if (transforms.isEmpty()) {
    return input;
    }

由于有如上代码,我们的yaml中没有涉及,所以忽略这个transform

  1. stream = transformTranslator.translatePostTransform
  • 同上
  1. stream = schemaOperatorTranslator.translate
  • 插入一个schemaOperator节点,在收到schemaChangeEvent的时候
    1. 停住当前流
    2. 上报coodinator
    3. flush下游数据,让sink消耗完已有数据
    4. sink 通知coodinator flush完成
    5. coodinator调用sink注册的MetaApplier完成schema变更,变更完成后通知schemaOperator
    6. schemaOperator重新放通数据
  1. stream = partitioningTranslator.translate
  • 构建prePartition postPartition节点
  1. sinkTranslator.translate
  • 构建sink节点
  1. FlinkPipelineExecution 中的 execute 方法调用 env.executeAsync(jobName)

总结

flink-cdc 3.0 提供的pipeline模式,通过定义yaml,自动构建了一条cdc pipeline,避免手动调用datastream api,并且支持schema evolution

构建的主要逻辑集中在 FlinkPipelineComposer

相关推荐
专注API从业者10 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
mask哥12 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
livemetee13 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
最初的↘那颗心19 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
青云交1 天前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特2 天前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
sleetdream2 天前
Flink Sql 按分钟或日期统计数据量
sql·flink
阿Paul果奶ooo2 天前
Flink中基于时间的合流--双流联结(join)
大数据·flink
Direction_Wind3 天前
Flinksql bug: Heartbeat of TaskManager with id container_XXX timed out.
大数据·flink·bug
最初的↘那颗心3 天前
Java 泛型类型擦除
java·flink