DQN强化训练agent玩是男人就下xx层小游戏

游戏代码参考Python是男人就下一百层小游戏源代码_是男人就下一百层完整代码python-CSDN博客

在游戏作者代码基础上修改了下使该游戏在失败后能自动重新开始,方便后续能不间断训练

    def reset_game(self):
        self.score = 0
        self.end = False
        self.last = 6 * SIDE
        self.dire = 0
        self.barrier.clear()
        self.barrier.append(Barrier(self.screen, SOLID))
        self.body = pygame.Rect(self.barrier[0].rect.center[0], 200, SIDE, SIDE)
  • 增加了 reset_game 方法

    • 此方法用于重置游戏状态,包括分数、结束标志、障碍物列表以及玩家的位置。
  • show_end 方法中添加了重启逻辑

    • 当游戏结束时,先显示结束状态,然后等待 2 秒钟(通过 pygame.time.delay(2000)),然后调用 reset_game 方法重新开始游戏。

游戏代码如下

#!python3
# -*- coding: utf-8 -*-
'''
公众号:Python代码大全
'''
from random import choice, randint
import pygame
from sys import exit


SCORE = 0
SOLID = 1
FRAGILE = 2
DEADLY = 3
BELT_LEFT = 4
BELT_RIGHT = 5
BODY = 6

GAME_ROW = 40
GAME_COL = 28
OBS_WIDTH = GAME_COL // 4
SIDE = 13
SCREEN_WIDTH = SIDE*GAME_COL
SCREEN_HEIGHT = SIDE*GAME_ROW
COLOR = {SOLID: 0x00ffff, FRAGILE: 0xff5500, DEADLY: 0xff2222, SCORE: 0xcccccc,
        BELT_LEFT: 0xffff44, BELT_RIGHT: 0xff99ff, BODY: 0x00ff00}
CHOICE = [SOLID, SOLID, SOLID, FRAGILE, FRAGILE, BELT_LEFT, BELT_RIGHT, DEADLY]


class Game(object):
    def __init__(self, title, size, fps=30):
        self.size = size
        pygame.init()
        self.screen = pygame.display.set_mode(size, 0, 32)
        pygame.display.set_caption(title)
        self.keys = {}
        self.keys_up = {}
        self.clicks = {}
        self.timer = pygame.time.Clock()
        self.fps = fps
        self.score = 0
        self.end = False
        self.fullscreen = False
        self.last_time = pygame.time.get_ticks()
        self.is_pause = False
        self.is_draw = True
        self.score_font = pygame.font.SysFont("Calibri", 130, True)

    def bind_key(self, key, action):
        if isinstance(key, list):
            for k in key:
                self.keys[k] = action
        elif isinstance(key, int):
            self.keys[key] = action

    def bind_key_up(self, key, action):
        if isinstance(key, list):
            for k in key:
                self.keys_up[k] = action
        elif isinstance(key, int):
            self.keys_up[key] = action

    def bind_click(self, button, action):
        self.clicks[button] = action

    def pause(self, key):
        self.is_pause = not self.is_pause

    def set_fps(self, fps):
        self.fps = fps

    def handle_input(self, event):
        if event.type == pygame.QUIT:
            pygame.quit()
            exit()
        if event.type == pygame.KEYDOWN:
            if event.key in self.keys.keys():
                self.keys[event.key](event.key)
            if event.key == pygame.K_F11:                           # F11全屏
                self.fullscreen = not self.fullscreen
                if self.fullscreen:
                    self.screen = pygame.display.set_mode(self.size, pygame.FULLSCREEN, 32)
                else:
                    self.screen = pygame.display.set_mode(self.size, 0, 32)
        if event.type == pygame.KEYUP:
            if event.key in self.keys_up.keys():
                self.keys_up[event.key](event.key)
        if event.type == pygame.MOUSEBUTTONDOWN:
            if event.button in self.clicks.keys():
                self.clicks[event.button](*event.pos)

    def run(self):
        while True:
            for event in pygame.event.get():
                self.handle_input(event)
            self.timer.tick(self.fps)

            self.update(pygame.time.get_ticks())
            self.draw(pygame.time.get_ticks())

    def draw_score(self, color, rect=None):
        score = self.score_font.render(str(self.score), True, color)
        if rect is None:
            r = self.screen.get_rect()
            rect = score.get_rect(center=r.center)
        self.screen.blit(score, rect)

    def is_end(self):
        return self.end

    def update(self, current_time):
        pass

    def draw(self, current_time):
        pass

class Barrier(object):
    def __init__(self, screen, opt=None):
        self.screen = screen
        if opt is None:
            self.type = choice(CHOICE)
        else:
            self.type = opt
        self.frag_touch = False
        self.frag_time = 12
        self.score = False
        self.belt_dire = 0
        self.belt_dire = pygame.K_LEFT if self.type == BELT_LEFT else pygame.K_RIGHT
        left = randint(0, SCREEN_WIDTH - 7 * SIDE - 1)
        top = SCREEN_HEIGHT - SIDE - 1
        self.rect = pygame.Rect(left, top, 7*SIDE, SIDE)

    def rise(self):
        if self.frag_touch:
            self.frag_time -= 1
        if self.frag_time == 0:
            return False
        self.rect.top -= 2
        return self.rect.top >= 0

    def draw_side(self, x, y):
        if self.type == SOLID:
            rect = pygame.Rect(x, y, SIDE, SIDE)
            self.screen.fill(COLOR[SOLID], rect)
        elif self.type == FRAGILE:
            rect = pygame.Rect(x+2, y, SIDE-4, SIDE)
            self.screen.fill(COLOR[FRAGILE], rect)
        elif self.type == BELT_LEFT or self.type == BELT_RIGHT:
            rect = pygame.Rect(x, y, SIDE, SIDE)
            pygame.draw.circle(self.screen, COLOR[self.type], rect.center, SIDE // 2 + 1)
        elif self.type == DEADLY:
            p1 = (x + SIDE//2 + 1, y)
            p2 = (x, y + SIDE)
            p3 = (x + SIDE, y + SIDE)
            points = [p1, p2, p3]
            pygame.draw.polygon(self.screen, COLOR[DEADLY], points)

    def draw(self):
        for i in range(7):
            self.draw_side(i*SIDE+self.rect.left, self.rect.top)


class Hell(Game):
    def __init__(self, title, size, fps=60):
        super(Hell, self).__init__(title, size, fps)
        self.last = 6 * SIDE
        self.dire = 0
        self.barrier = [Barrier(self.screen, SOLID)]
        self.body = pygame.Rect(self.barrier[0].rect.center[0], 200, SIDE, SIDE)

        self.bind_key([pygame.K_LEFT, pygame.K_RIGHT], self.move)
        self.bind_key_up([pygame.K_LEFT, pygame.K_RIGHT], self.unmove)
        self.bind_key(pygame.K_SPACE, self.pause)

    def move(self, key):
        self.dire = key

    def unmove(self, key):
        self.dire = 0

    def reset_game(self):
        self.score = 0
        self.end = False
        self.last = 6 * SIDE
        self.dire = 0
        self.barrier.clear()
        self.barrier.append(Barrier(self.screen, SOLID))
        self.body = pygame.Rect(self.barrier[0].rect.center[0], 200, SIDE, SIDE)


    def show_end(self):
        self.draw(0, end=True)
        self.end = True
        self.reset_game()

    def move_man(self, dire):
        if dire == 0:
            return True
        rect = self.body.copy()
        if dire == pygame.K_LEFT:
            rect.left -= 1
        else:
            rect.left += 1
        if rect.left < 0 or rect.left + SIDE >= SCREEN_WIDTH:
            return False
        for ba in self.barrier:
            if rect.colliderect(ba.rect):
                return False
        self.body = rect
        return True

    def get_score(self, ba):
        if self.body.top > ba.rect.top and not ba.score:
            self.score += 1
            ba.score = True

    def to_hell(self):
        self.body.top += 2
        for ba in self.barrier:
            if not self.body.colliderect(ba.rect):
                self.get_score(ba)
                continue
            if ba.type == DEADLY:
                self.show_end()
                return
            self.body.top = ba.rect.top - SIDE - 2
            if ba.type == FRAGILE:
                ba.frag_touch = True
            elif ba.type == BELT_LEFT or ba.type == BELT_RIGHT:
                # self.body.left += ba.belt_dire
                self.move_man(ba.belt_dire)
            break

        top = self.body.top
        if top < 0 or top+SIDE >= SCREEN_HEIGHT:
            self.show_end()

    def create_barrier(self):
        solid = list(filter(lambda ba: ba.type == SOLID, self.barrier))
        if len(solid) < 1:
            self.barrier.append(Barrier(self.screen, SOLID))
        else:
            self.barrier.append(Barrier(self.screen))
        self.last = randint(3, 5) * SIDE

    def update(self, current_time):
        if self.end or self.is_pause:
            return
        self.last -= 1
        if self.last == 0:
            self.create_barrier()

        for ba in self.barrier:
            if not ba.rise():
                if ba.type == FRAGILE and ba.rect.top > 0:
                    self.score += 1
                self.barrier.remove(ba)

        self.move_man(self.dire)
        self.to_hell()

    def draw(self, current_time, end=False):
        if self.end or self.is_pause:
            return
        self.screen.fill(0x000000)
        self.draw_score((0x3c, 0x3c, 0x3c))
        for ba in self.barrier:
            ba.draw()
        if not end:
            self.screen.fill(COLOR[BODY], self.body)
        else:
            self.screen.fill(COLOR[DEADLY], self.body)
        pygame.display.update()


def hex2rgb(color):
    b = color % 256
    color = color >> 8
    g = color % 256
    color = color >> 8
    r = color % 256
    return (r, g, b)




if __name__ == '__main__':
    hell = Hell("是男人就下一百层", (SCREEN_WIDTH, SCREEN_HEIGHT))
    hell.run()

下面是选择合适的强化学习算子,考虑使用 深度 Q 学习(DQN)。选择DQN有下面这些原因

1. 离散动作空间

DQN 特别适合于离散的动作空间,比如在游戏中选择一系列固定的动作(如移动方向、攻击、跳跃等)。它能够通过神经网络来逼近 Q 值,从而有效地选择最佳动作。

2. 状态表示复杂

当环境的状态空间非常复杂,传统的 Q 学习方法难以处理时,DQN 可以通过深度学习提取特征,自动学习复杂状态的表示,适用于图像、视频等数据。

3. 需要处理高维输入

在需要处理高维输入(如图像)的场景中,DQN 能够利用卷积神经网络(CNN)有效提取特征,适合于如 Atari 游戏等场景。

4. 随机性较高的环境

在环境具有较高随机性和不确定性时,DQN 能够通过经验回放(Experience Replay)和目标网络(Target Network)来稳定学习过程,减少波动。

5. 长期奖励优化

DQN 适用于需要优化长期奖励的任务,如自动驾驶、机器人控制等,这些任务中,当前的决策可能会影响未来的奖励。

先找个DQN算法的pytorch模板

import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque

class DQNAgent(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQNAgent, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95  # discount rate
        self.epsilon = 1.0  # exploration rate
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.model = self._build_model()
        self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
        self.loss_fn = nn.MSELoss()

    def _build_model(self):
        model = nn.Sequential(
            nn.Linear(self.state_size, 24),  # 第一层
            nn.ReLU(),
            nn.Linear(24, 24),  # 第二层
            nn.ReLU(),
            nn.Linear(24, self.action_size)  # 输出层
        )
        return model

    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)  # 随机选择动作
        with torch.no_grad():
            state_tensor = torch.FloatTensor(state)
            act_values = self.model(state_tensor)
        return np.argmax(act_values.numpy())

    def replay(self, batch_size):
        minibatch = random.sample(self.memory, batch_size)
        for state, action, reward, next_state, done in minibatch:
            target = reward
            if not done:
                next_state_tensor = torch.FloatTensor(next_state)
                target += self.gamma * torch.max(self.model(next_state_tensor)).item()
            target_f = self.model(torch.FloatTensor(state))
            target_f[action] = target
            self.optimizer.zero_grad()
            loss = self.loss_fn(target_f, self.model(torch.FloatTensor(state)))
            loss.backward()
            self.optimizer.step()
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

# 环境类的示例
class Env:
    def __init__(self):
        # 初始化游戏环境
        pass

    def reset(self):
        # 重置游戏
        pass

    def step(self, action):
        # 执行动作,返回下一个状态、奖励、是否结束等
        pass

    def get_state(self):
        # 返回当前状态
        pass

# 训练主循环
if __name__ == "__main__":
    env = Env()  # 实例化游戏环境
    state_size = 3  # 根据状态特征数量调整
    action_size = 3  # 根据实际动作数量调整
    agent = DQNAgent(state_size, action_size)

    episodes = 1000
    for e in range(episodes):
        state = env.reset()
        state = np.reshape(state, [1, state_size])
        for time in range(500):
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            reward = reward if not done else -10  # 奖励调整
            next_state = np.reshape(next_state, [1, state_size])
            agent.remember(state, action, reward, next_state, done)
            state = next_state
            if done:
                print(f"Episode: {e}/{episodes}, Score: {time}, Epsilon: {agent.epsilon:.2}")
                break
        if len(agent.memory) > 32:
            agent.replay(32)

结合游戏代码开始编写训练脚本

import os

import numpy as np
import random

import pygame
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque

from getdown import Hell, SCREEN_WIDTH, SCREEN_HEIGHT


class DQNAgent(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQNAgent, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.memory = deque(maxlen=2000)
        self.gamma = 0.95  # discount rate
        self.epsilon = 1.0  # exploration rate
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.model = self._build_model()
        self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
        self.loss_fn = nn.MSELoss()

    def _build_model(self):
        model = nn.Sequential(
            nn.Linear(self.state_size, 24),  # 第一层
            nn.ReLU(),
            nn.Linear(24, 24),  # 第二层
            nn.ReLU(),
            nn.Linear(24, self.action_size)  # 输出层
        )
        return model

    def remember(self, state, action, reward, next_state, done):
        self.memory.append((state, action, reward, next_state, done))

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)  # 随机选择动作
        with torch.no_grad():
            state_tensor = torch.FloatTensor(state)
            act_values = self.model(state_tensor)
        return np.argmax(act_values.numpy())

    def replay(self, batch_size):
        minibatch = random.sample(self.memory, batch_size)
        for state, action, reward, next_state, done in minibatch:
            target = reward
            if not done:
                next_state_tensor = torch.FloatTensor(next_state)
                target += self.gamma * torch.max(self.model(next_state_tensor)).item()
            target_f = self.model(torch.FloatTensor(state))
            target_f = target_f.squeeze()
            target_f[action] = target
            self.optimizer.zero_grad()
            loss = self.loss_fn(target_f, self.model(torch.FloatTensor(state)))
            loss.backward()
            self.optimizer.step()
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def save_model(self, file_name):
        torch.save(self.model.state_dict(), file_name)  # 保存模型的参数

    def load_model(self, file_name):
        if os.path.exists(file_name):
            self.model.load_state_dict(torch.load(file_name))  # 加载模型的参数
            print(f"Model loaded from {file_name}")
        else:
            print(f"No model found at {file_name}, starting from scratch.")



# 环境类的示例
class Env:
    def __init__(self, hell):
        self.hell = hell # 创建游戏实例
        self.state_size = 9  # 根据状态特征数量调整
        self.action_size = 3  # 左, 右, 不动

    def reset(self):
        # 重置游戏
        self.hell.reset()
        return self.get_state()


    def step(self, action):
        if action == 0:  # Move left
            self.hell.move(pygame.K_LEFT)
        elif action == 1:  # Move right
            self.hell.move(pygame.K_RIGHT)
        else:  # Stay still
            self.hell.unmove(None)

        self.hell.update(pygame.time.get_ticks())  # 更新游戏状态

        # 获取状态、奖励和结束信息
        state = self.get_state()
        reward = self.hell.score
        done = self.hell.end

        return state, reward, done, {}

    def get_state(self):
        state = []
        state.append(self.hell.body.x)  # 玩家 x 坐标
        state.append(self.hell.body.y)  # 玩家 y 坐标
        state.append(len(self.hell.barrier))  # 障碍物数量

        # 记录最多 2 个障碍物的信息
        max_barriers = 2
        for i in range(max_barriers):
            if i < len(self.hell.barrier):
                ba = self.hell.barrier[i]
                state.append(ba.rect.x)  # 障碍物 x 坐标
                state.append(ba.rect.y)  # 障碍物 y 坐标
                state.append(ba.type)  # 障碍物类型
            else:
                # 如果没有障碍物,用零填充
                state.extend([0, 0, 0])

        # 确保状态的长度与 state_size 一致
        return np.array(state)


# 训练主循环
if __name__ == "__main__":
    env = Env(Hell("是男人就下一百层", (SCREEN_WIDTH, SCREEN_HEIGHT)))  # 初始化强化学习环境
    agent = DQNAgent(env.state_size, env.action_size)  # 创建 DQN 代理

    model_path = "getdown_hell_model.h5"  # 你可以根据需要更改路径
    agent.load_model(model_path)

    total_steps = 0  # 初始化总步数

    while True:  # 无限训练
        state = env.reset()
        state = np.reshape(state, [1, env.state_size])
        for time in range(500):
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            reward = reward if not done else -10  # 奖励调整
            next_state = np.reshape(next_state, [1, env.state_size])
            agent.remember(state, action, reward, next_state, done)
            state = next_state
            total_steps += 1

            if done:
                print(f"Score: {time}, Total Steps: {total_steps}, Epsilon: {agent.epsilon:.2}")
                break

            # 在每1000步时保存模型
            if total_steps % 1000 == 0:
                agent.save_model("getdown_hell_model.h5")  # 保存模型

        if len(agent.memory) > 32:
            agent.replay(32)

增加断点续训功能,上面代码状态空间和奖惩函数设计肯定是不全面,先跑起来训练看看

发现强化训练陷入到一个局部最优即一次性落入底部,这样获取score的奖励,它没有考虑还有可能获取更多得分的可能性,奖惩函数需要修改。不过现在我们先尝试修改游戏代码,把模型接入到控制里看看效果

#!python3
# -*- coding: utf-8 -*-
'''
公众号:Python代码大全
'''
from random import choice, randint

import numpy as np
import pygame
from sys import exit

from getdown_dqn import DQNAgent, Env

SCORE = 0
SOLID = 1
FRAGILE = 2
DEADLY = 3
BELT_LEFT = 4
BELT_RIGHT = 5
BODY = 6

GAME_ROW = 40
GAME_COL = 28
OBS_WIDTH = GAME_COL // 4
SIDE = 13
SCREEN_WIDTH = SIDE*GAME_COL
SCREEN_HEIGHT = SIDE*GAME_ROW
COLOR = {SOLID: 0x00ffff, FRAGILE: 0xff5500, DEADLY: 0xff2222, SCORE: 0xcccccc,
        BELT_LEFT: 0xffff44, BELT_RIGHT: 0xff99ff, BODY: 0x00ff00}
CHOICE = [SOLID, SOLID, SOLID, FRAGILE, FRAGILE, BELT_LEFT, BELT_RIGHT, DEADLY]


class Game(object):
    def __init__(self, title, size, fps=30):
        self.size = size
        pygame.init()
        self.screen = pygame.display.set_mode(size, 0, 32)
        pygame.display.set_caption(title)
        self.keys = {}
        self.keys_up = {}
        self.clicks = {}
        self.timer = pygame.time.Clock()
        self.fps = fps
        self.score = 0
        self.end = False
        self.fullscreen = False
        self.last_time = pygame.time.get_ticks()
        self.is_pause = False
        self.is_draw = True
        self.score_font = pygame.font.SysFont("Calibri", 130, True)

    def bind_key(self, key, action):
        if isinstance(key, list):
            for k in key:
                self.keys[k] = action
        elif isinstance(key, int):
            self.keys[key] = action

    def bind_key_up(self, key, action):
        if isinstance(key, list):
            for k in key:
                self.keys_up[k] = action
        elif isinstance(key, int):
            self.keys_up[key] = action

    def bind_click(self, button, action):
        self.clicks[button] = action

    def pause(self, key):
        self.is_pause = not self.is_pause

    def set_fps(self, fps):
        self.fps = fps

    def handle_input(self, event):
        if event.type == pygame.QUIT:
            pygame.quit()
            exit()
        if event.type == pygame.KEYDOWN:
            if event.key in self.keys.keys():
                self.keys[event.key](event.key)
            if event.key == pygame.K_F11:                           # F11全屏
                self.fullscreen = not self.fullscreen
                if self.fullscreen:
                    self.screen = pygame.display.set_mode(self.size, pygame.FULLSCREEN, 32)
                else:
                    self.screen = pygame.display.set_mode(self.size, 0, 32)
        if event.type == pygame.KEYUP:
            if event.key in self.keys_up.keys():
                self.keys_up[event.key](event.key)
        if event.type == pygame.MOUSEBUTTONDOWN:
            if event.button in self.clicks.keys():
                self.clicks[event.button](*event.pos)

    def run(self):
        while True:
            state = env.get_state()
            state = np.reshape(state, [1, env.state_size])
            action = agent.act(state)
            if action == 0:  # Move left
                self.handle_input(simulate_key_press(pygame.K_LEFT))
            elif action == 1:  # Move right
                self.handle_input(simulate_key_press(pygame.K_RIGHT))

            self.timer.tick(self.fps)
            self.update(pygame.time.get_ticks())
            self.draw(pygame.time.get_ticks())

    def draw_score(self, color, rect=None):
        score = self.score_font.render(str(self.score), True, color)
        if rect is None:
            r = self.screen.get_rect()
            rect = score.get_rect(center=r.center)
        self.screen.blit(score, rect)

    def is_end(self):
        return self.end

    def get_state(self):
        return self.end

    def update(self, current_time):
        pass

    def draw(self, current_time):
        pass


class Barrier(object):
    def __init__(self, screen, opt=None):
        self.screen = screen
        if opt is None:
            self.type = choice(CHOICE)
        else:
            self.type = opt
        self.frag_touch = False
        self.frag_time = 12
        self.score = False
        self.belt_dire = 0
        self.belt_dire = pygame.K_LEFT if self.type == BELT_LEFT else pygame.K_RIGHT
        left = randint(0, SCREEN_WIDTH - 7 * SIDE - 1)
        top = SCREEN_HEIGHT - SIDE - 1
        self.rect = pygame.Rect(left, top, 7*SIDE, SIDE)

    def rise(self):
        if self.frag_touch:
            self.frag_time -= 1
        if self.frag_time == 0:
            return False
        self.rect.top -= 2
        return self.rect.top >= 0

    def draw_side(self, x, y):
        if self.type == SOLID:
            rect = pygame.Rect(x, y, SIDE, SIDE)
            self.screen.fill(COLOR[SOLID], rect)
        elif self.type == FRAGILE:
            rect = pygame.Rect(x+2, y, SIDE-4, SIDE)
            self.screen.fill(COLOR[FRAGILE], rect)
        elif self.type == BELT_LEFT or self.type == BELT_RIGHT:
            rect = pygame.Rect(x, y, SIDE, SIDE)
            pygame.draw.circle(self.screen, COLOR[self.type], rect.center, SIDE // 2 + 1)
        elif self.type == DEADLY:
            p1 = (x + SIDE//2 + 1, y)
            p2 = (x, y + SIDE)
            p3 = (x + SIDE, y + SIDE)
            points = [p1, p2, p3]
            pygame.draw.polygon(self.screen, COLOR[DEADLY], points)

    def draw(self):
        for i in range(7):
            self.draw_side(i*SIDE+self.rect.left, self.rect.top)


class Hell(Game):
    def __init__(self, title, size, fps=60):
        super(Hell, self).__init__(title, size, fps)
        self.last = 6 * SIDE
        self.dire = 0
        self.barrier = [Barrier(self.screen, SOLID)]
        self.body = pygame.Rect(self.barrier[0].rect.center[0], 200, SIDE, SIDE)

        self.bind_key([pygame.K_LEFT, pygame.K_RIGHT], self.move)
        self.bind_key_up([pygame.K_LEFT, pygame.K_RIGHT], self.unmove)
        self.bind_key(pygame.K_SPACE, self.pause)

    def move(self, key):
        self.dire = key

    def unmove(self, key):
        self.dire = 0

    def reset(self):
        self.score = 0
        self.end = False
        self.last = 6 * SIDE
        self.dire = 0
        self.barrier.clear()
        self.barrier.append(Barrier(self.screen, SOLID))
        self.body = pygame.Rect(self.barrier[0].rect.center[0], 200, SIDE, SIDE)


    def show_end(self):
        self.draw(0, end=True)
        self.end = True
        self.reset()

    def move_man(self, dire):
        if dire == 0:
            return True
        rect = self.body.copy()
        if dire == pygame.K_LEFT:
            rect.left -= 1
        else:
            rect.left += 1
        if rect.left < 0 or rect.left + SIDE >= SCREEN_WIDTH:
            return False
        for ba in self.barrier:
            if rect.colliderect(ba.rect):
                return False
        self.body = rect
        return True

    def get_score(self, ba):
        if self.body.top > ba.rect.top and not ba.score:
            self.score += 1
            ba.score = True

    def to_hell(self):
        self.body.top += 2
        for ba in self.barrier:
            if not self.body.colliderect(ba.rect):
                self.get_score(ba)
                continue
            if ba.type == DEADLY:
                self.show_end()
                return
            self.body.top = ba.rect.top - SIDE - 2
            if ba.type == FRAGILE:
                ba.frag_touch = True
            elif ba.type == BELT_LEFT or ba.type == BELT_RIGHT:
                # self.body.left += ba.belt_dire
                self.move_man(ba.belt_dire)
            break

        top = self.body.top
        if top < 0 or top+SIDE >= SCREEN_HEIGHT:
            self.show_end()

    def create_barrier(self):
        solid = list(filter(lambda ba: ba.type == SOLID, self.barrier))
        if len(solid) < 1:
            self.barrier.append(Barrier(self.screen, SOLID))
        else:
            self.barrier.append(Barrier(self.screen))
        self.last = randint(3, 5) * SIDE

    def update(self, current_time):
        if self.end or self.is_pause:
            return
        self.last -= 1
        if self.last == 0:
            self.create_barrier()

        for ba in self.barrier:
            if not ba.rise():
                if ba.type == FRAGILE and ba.rect.top > 0:
                    self.score += 1
                self.barrier.remove(ba)

        self.move_man(self.dire)
        self.to_hell()

    def draw(self, current_time, end=False):
        if self.end or self.is_pause:
            return
        self.screen.fill(0x000000)
        self.draw_score((0x3c, 0x3c, 0x3c))
        for ba in self.barrier:
            ba.draw()
        if not end:
            self.screen.fill(COLOR[BODY], self.body)
        else:
            self.screen.fill(COLOR[DEADLY], self.body)
        pygame.display.update()

def simulate_key_press(key):
    event = pygame.event.Event(pygame.KEYDOWN, key=key)
    return event


def hex2rgb(color):
    b = color % 256
    color = color >> 8
    g = color % 256
    color = color >> 8
    r = color % 256
    return (r, g, b)

if __name__ == '__main__':
    hell = Hell("是男人就下一百层", (SCREEN_WIDTH, SCREEN_HEIGHT))
    env = Env(hell)
    agent = DQNAgent(env.state_size, env.action_size)
    model_path = "getdown_hell_model.h5"  # 你可以根据需要更改路径
    agent.load_model(model_path)
    # 开始游戏
    hell.run()

先试试控制效果,模型接入控制

如果只根据分数(例如 self.hell.score)进行训练,可能会导致强化学习模型无法有效地捕捉到长程反馈。这是因为单一的奖励信号可能不足以鼓励代理在较长的时间跨度内采取合适的行动。为了改善这一点,优化奖励函数是非常重要的。

优化奖励函数的建议

  1. 分段奖励:考虑根据特定事件或状态变化给予额外奖励。例如,当物体成功离开本级台阶或达到下面某级台阶时,可以提供额外奖励。

    if agent_avoided_obstacle:
        reward += 10  # 例如,成功避开障碍物时给予奖励
    
  2. 负奖励:对于不良行为,给予负奖励。例如,当物体碰到带刺障碍失败时,给予负奖励。这可以帮助代理学习避免这些行为。

    if agent_hit_obstacle:
        reward -= 10  # 碰到障碍物时给予惩罚
    
  3. 使用时间奖励:为每个时间步骤提供小的正奖励,以鼓励持续进行游戏。

    reward += 0.1  # 每个时间步骤给予小奖励
    
  4. 引入长程奖励 :可以通过使用折扣因子(通常用 gamma 表示)来考虑未来奖励的影响。在计算目标值时,考虑未来的奖励。

    target += self.gamma * next_value
    
  5. 状态变化奖励:根据状态的变化给予奖励。例如,当物体到达新的区域或发现新的障碍物时,可以给予奖励。

根据上面列的几点修改奖励函数

    def compute_reward(self, action):
        reward = self.hell.score  # 基于当前分数的奖励
        body = self.hell.body
        barrier = self.hell.barrier

        target_y = body.y + body.h + 2
        matching_barriers = [ba for ba in barrier
                             if ba.rect.y == target_y and ba.rect.x < body.x < (
                                     ba.rect.x + ba.rect.width)]

        # 当物体成功离开本级台阶或达到下面某级台阶时,可以提供额外奖励。
        if matching_barriers:
            left_distance = body.x - matching_barriers[0].rect.x
            right_distance = matching_barriers[0].rect.x + matching_barriers[0].rect.width - body.x
            # 说明在台面上移动
            if left_distance < right_distance and action == 0:
                reward += 0.1
            elif left_distance > right_distance and action == 1:
                reward += 0.1
            else:
                reward -= 0.1

        thres_hold = 100
        matching_barriers = [ba for ba in barrier
                             if 0 < (ba.rect.y - body.y) < thres_hold and ba.rect.x < body.x < (
                                     ba.rect.x + ba.rect.width)]

        # 对于不良行为,给予负奖励。例如,下方快碰到带刺的障碍时
        if matching_barriers and matching_barriers[0].type == 2:
            reward -= 5
        else:
            reward += 3

        # 当物体到达新的区域或发现新的障碍物时,可以给予奖励。
        if self.preview_barrier_num < len(self.hell.barrier):
            self.preview_barrier_num = len(self.hell.barrier)
            reward += 1
        else:
            reward -= 0.5

        # 增加下落时朝向障碍物的奖励
        falling_towards_barrier = any(
            ba.rect.x < body.x < (ba.rect.x + ba.rect.width) and ba.rect.y > body.y
            for ba in barrier
        )
        if falling_towards_barrier:
            reward += 2

        # 为每个时间步骤提供小的正奖励,以鼓励持续进行游戏。
        reward += 0.1
        return reward

训练代码增加奖励(reward)线图来监控训练过程,使用 matplotlib 库来绘制图形。

if __name__ == "__main__":
    env = Env(Hell("是男人就下一百层", (SCREEN_WIDTH, SCREEN_HEIGHT)))  # 初始化强化学习环境
    agent = DQNAgent(env.state_size, env.action_size)  # 创建 DQN 代理

    model_path = "getdown_hell_model.h5"  # 你可以根据需要更改路径
    agent.load_model(model_path)

    total_steps = 0  # 初始化总步数
    total_game_num = 0
    rewards = []  # 用于记录每个回合的总奖励

    try:
        state = env.reset()
        while True:  # 无限训练

            state = np.reshape(state, [1, env.state_size])
            total_reward = 0  # 每个回合的总奖励

            #for time in range(1000):
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            reward = reward if not done else -10  # 奖励调整
            next_state = np.reshape(next_state, [1, env.state_size])
            agent.remember(state, action, reward, next_state, done)
            state = next_state
            total_steps += 1
            total_reward += reward  # 更新总奖励
            rewards.append(total_reward)

            # rewards 只保留一万条记录
            if len(rewards) > 10000:
                rewards.pop(0)

            if done:
                print(f"Total game num: {total_game_num},Total Steps: {total_steps}, total score: {env.hell.score}, Epsilon: {agent.epsilon:.7}")
                print(f'current step:{total_steps}, save getdown_hell_model.h5')
                agent.save_model("getdown_hell_model.h5")  # 保存模型
                total_game_num += 1
                env.hell.reset()


            if len(agent.memory) > 32:
                agent.replay(32)

    except KeyboardInterrupt:
        print('rewards', rewards)
        print("\nTraining interrupted. Saving model...")
        agent.save_model("getdown_hell_model.h5")  # 保存模型

    # 绘制奖励线图
    plt.plot(rewards)
    plt.title("Training Rewards Over Time")
    plt.xlabel("Episode")
    plt.ylabel("Total Reward")
    plt.savefig("training_rewards.png", format='png')

继续训练

日志输出

......

Total game num: 6,Total Steps: 176, total score: 4, Epsilon: 0.009986452

current step:176, save getdown_hell_model.h5

Total game num: 7,Total Steps: 200, total score: 3, Epsilon: 0.009986452

current step:200, save getdown_hell_model.h5

Total game num: 8,Total Steps: 234, total score: 4, Epsilon: 0.009986452

current step:234, save getdown_hell_model.h5

Total game num: 9,Total Steps: 265, total score: 5, Epsilon: 0.009986452

current step:265, save getdown_hell_model.h5

Total game num: 10,Total Steps: 288, total score: 6, Epsilon: 0.009986452

current step:288, save getdown_hell_model.h5

Total game num: 11,Total Steps: 258, total score: 5, Epsilon: 0.009986452

current step:258, save getdown_hell_model.h5

Total game num: 12,Total Steps: 884, total score: 17, Epsilon: 0.009986452

current step:884, save getdown_hell_model.h5

Total game num: 13,Total Steps: 221, total score: 4, Epsilon: 0.009986452

......

在训练过程中,通常会逐渐减少 epsilon 值,这种做法被称为 "epsilon decay"。这样可以确保代理在初始阶段有足够的探索能力,而随着训练的进行,逐渐更多地利用已学知识。一般流程如下:

  • 初始阶段 :设置较高的 epsilon(如 1.0),鼓励代理进行大量探索。
  • 中期阶段 :逐渐降低 epsilon,例如每个回合减少一个固定值或按指数衰减。
  • 后期阶段 :将 epsilon 降到较低的最小值(如 0.01)以确保在训练后期仍然有少量的探索。

发现效果不明显,经过思考加了暴力奖惩,让物体必需停留在y轴区间内

# 判断物体所处的位置控制在100~400之间
        if 100 < body.y < 400:
            reward += 1
        elif 150 < body.y < 350:
            reward += 2
        elif 200 < body.y < 300:
            reward += 3
        else:
            reward -= 1

k8s上挂了pod持久训练,等有好的训练结果跑测试

代码提交在github地址

https://github.com/chenrui2200/getdown_hell_rl_train

相关推荐
孤独且没人爱的纸鹤7 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
l1x1n010 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
是Dream呀1 小时前
Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
python·神经网络·迁移学习
小林熬夜学编程1 小时前
【Python】第三弹---编程基础进阶:掌握输入输出与运算符的全面指南
开发语言·python·算法
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Johaden5 小时前
EXCEL+Python搞定数据处理(第一部分:Python入门-第2章:开发环境)
开发语言·vscode·python·conda·excel
小虎牙^O^6 小时前
2024春秋杯密码题第一、二天WP
python·密码学
梦魇梦狸º7 小时前
mac 配置 python 环境变量
chrome·python·macos
查理零世7 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
查士丁尼·绵9 小时前
面试-字符串1
python