AMD-OLMo:在 AMD Instinct MI250 GPU 上训练的新一代大型语言模型。

AMD-OLMo是一系列10亿参数语言模型,由AMD公司在AMD Instinct MI250 GPU上进行训练,AMD Instinct MI250 GPU是一个功能强大的图形处理器集群,它利用了OLMo这一公司开发的尖端语言模型。AMD 创建 OLMo 是为了突出其 Instinct GPU 在运行 "具有数万亿标记的大规模多节点 LM 训练工作 "方面的能力,与其他完全开放的类似规模的 LM 相比,OLMo 可实现更高的推理和指令跟踪性能。

OLMo 是最先进的开源软件,但其参数数量少于 AI2(前身为艾伦人工智能研究所)开发的同类软件。AMD 的版本有 10 亿个参数,而 AI2 的 OLMo 有 70 亿个参数。尽管在规模上存在差异,但 AMD 的 OLMo 已经在 1.3 万亿个令牌的海量数据集上进行了训练,这些数据集在 16 个节点上进行了预训练,每个节点都配备了四个 AMD Instinct MI250 GPU。通过这种训练,AMD-OLMo 开发出了令人印象深刻的语言能力,包括预测句子中下一个单词的能力,使其适用于聊天机器人等应用。

AMD 的 OLMo 已与其他公开的型号进行了比较,其性能令人印象深刻。例如,它已被证明优于其他指令调整基线。该公司认为,OLMo 的发布将有助于开发人员复制其工作,并在 "顶端 "进一步创新。此外,AMD-OLMo 还有望推广该公司的处理器,展示其强大功能,并在与 Nvidia 和英特尔等竞争对手的竞争中提升其声誉。

OLMo 的发布是 AMD 努力让人工智能(AI)更接近边缘设备的一部分。近年来,该公司已经推出了多项人工智能创新技术,包括发布注入人工智能的 Ryzen、Instinct 和 Epyc 芯片。AMD 的 OLMo 模型可在 Hugging Face 上获得,开发人员可以访问该模型的数据、权重、训练配方和代码,以重现其工作并在此基础上进行开发。

预训练结果

Standard Benchmarks TinyLLaMA-v1.1 (1.1B) MobiLLaMA-1B (1.2B) OLMo-1B (1.2B) OpenELM-1_1B (1.1B) OLMo-1B-0724-hf (1.2B) AMD-OLMo-1B (1.2B)
arc_easy 55.47 56.65 57.28 55.43 56.65 63.64
arc_challenge 32.68 32.00 31.06 32.34 32.34 33.70
hellaswag 61.47 61.80 62.92 64.81 66.12 63.61
piqa 73.56 75.30 75.14 75.57 75.08 75.57
boolq 55.99 60.83 61.74 63.58 66.18 60.58
sciq 89.30 88.20 87.00 90.60 92.70 93.20
winogrande 59.43 59.27 59.98 61.72 61.72 61.64
openbookqa 36.80 35.40 36.20 36.20 35.60 35.80
mmlu (0-shot) 25.02 24.81 24.23 25.26 25.45 24.88
gsm8k (8-shot) 1.82 0.00 2.50 2.81 8.95 2.88
bbh (3-shot) 25.63 0.00 25.63 16.77 21.67 20.95
Average 47.02 44.93 47.61 47.73 49.31 48.77

指令调整结果

Standard Benchmarks TinyLlama-1.1B-Chat-v1.0 (1.1B) MobiLlama-1B-Chat (1.2B) OpenELM-1_1B-Instruct (1.1B) AMD-OLMo-1B-SFT (1.2B) AMD-OLMo-1B-SFT-DPO (1.2B)
arc_easy 54.42 57.41 52.44 63.68 64.31
arc_challenge 32.85 34.56 37.80 37.12 37.37
hellaswag 60.40 62.51 71.29 61.63 61.91
piqa 74.48 75.73 75.03 74.43 74.16
boolq 61.04 55.66 70.28 68.53 70.24
sciq 88.40 87.10 89.50 91.20 92.10
winogrande 60.54 60.77 62.19 60.22 60.62
openbookqa 37.20 36.80 39.20 37.40 40.20
mmlu 24.61 25.25 25.54 29.97 30.52
gsm8k (8-shot) 2.81 0.23 1.82 18.20 15.77
bbh (3-shot) 26.83 0.00 13.40 25.17 25.45
Average 47.60 45.09 48.95 51.60 52.06
Chat Benchmarks TinyLlama-1.1B-Chat-v1.0 (1.1B) MobiLlama-1B-Chat (1.2B) OpenELM-1_1B-Instruct (1.1B) AMD-OLMo-1B-SFT (1.2B) AMD-OLMo-1B-SFT-DPO (1.2B)
AlpacaEval 1 (Win Rate) 50.81 34.90 37.72 50.12 54.22
AlpacaEval 2 (LC Win Rate) 1.54 1.59 0.49 3.88 2.37
MTBench 3.38 2.89 - 4.35 4.10
Responsible AI Benchmarks TinyLlama-1.1B-Chat-v1.0 (1.1B) MobiLlama-1B-Chat (1.2B) OpenELM-1_1B-Instruct (1.1B) AMD-OLMo-1B-SFT (1.2B) AMD-OLMo-1B-SFT-DPO (1.2B)
ToxiGen 41.70 37.23 42.34 39.04 39.68
crows_pairs 60.35 58.50 59.93 60.29 61.00
TruthfulQA-mc2 37.92 38.46 45.84 37.45 40.06
  • 在为聊天基准评估生成标记时,我们在 AlpacaEval 中使用 max_length=2048,在 MTBench 中使用 max_new_tokens=2048。
  • 上表中的所有数字均来自我们的评估。

这次发布对 AMD 来说是意义重大的一步,因为它不仅彰显了 AMD 硬件在人工智能领域的实力,而且还使 AMD 在快速发展的人工智能芯片市场上与 Nvidia 和英特尔等行业领导者一较高下。通过在 Hugging Face 上提供模型,AMD 鼓励开发人员在其工作基础上进行实验和开发,从而有可能推动语言建模和人工智能应用的进一步发展。

Huggingface:amd/AMD-OLMo

感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。点赞并关注,获取最新科技动态,不落伍!🤗🤗🤗

相关推荐
爱编程的鱼7 分钟前
ESLint 是什么?
开发语言·网络·人工智能·网络协议
星光一影9 分钟前
Spring Boot 3+Spring AI 打造旅游智能体!集成阿里云通义千问,多轮对话 + 搜索 + PDF 生成撑全流程
人工智能·spring boot·spring
IT_陈寒13 分钟前
Vite性能优化实战:5个被低估的配置让你的开发效率提升50%
前端·人工智能·后端
IT_陈寒15 分钟前
Java性能调优的7个被低估的技巧:从代码到JVM全链路优化
前端·人工智能·后端
电子脑洞工坊19 分钟前
以opencv为例说明怎么才算会用一个库
人工智能·opencv·计算机视觉
渡我白衣22 分钟前
链接的迷雾:odr、弱符号与静态库的三国杀
android·java·开发语言·c++·人工智能·深度学习·神经网络
云卓SKYDROID23 分钟前
无人机探测器技术要点解析
人工智能·无人机·材质·高科技·云卓科技
机器之心26 分钟前
全球第二、国内第一!最强文本的文心5.0 Preview一手实测来了
人工智能·openai
FreeCode1 小时前
LangChain1.0智能体开发:运行时(Runtime)
人工智能·langchain·agent
柳安忆1 小时前
【论文阅读与项目复现】Hypothesis Generation with Large Language Models
论文阅读·人工智能·语言模型