ubuntu20.04 解决Pytorch默认安装CPU版本的问题

ubuntu20.04 解决Pytorch默认安装CPU版本的问题

在使用Anaconda安装支持CUDA的PyTorch版本时,遇到只能安装CPU版本的PyTorch是一个常见问题。这通常由于Anaconda环境配置、镜像源设置不当或版本匹配问题导致。以下是详尽的解决方案和步骤,以确保能够正确配置和使用镜像源安装正确的PyTorch版本。

问题分析

  1. 镜像源的优先级问题:当存在多个同名包时,Conda会根据配置的镜像源优先级决定下载哪一个版本。如果GPU支持的版本和CPU版本同时存在,没有正确设置优先级,可能导致安装了不支持CUDA的版本。

  2. 版本匹配问题:指定的PyTorch版本和cudatoolkit版本可能在所选的镜像源中无法找到匹配的组合,导致自动回退到只包含CPU支持的版本。

解决方案和步骤

步骤1: 正确设置镜像源
  • 添加PyTorch专用镜像源

    bash 复制代码
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

    这个源专门为PyTorch及其依赖库提供服务,包括支持不同CUDA版本的PyTorch安装包。

  • 设置显示频道URLs

    bash 复制代码
    conda config --set show_channel_urls yes

    这一设置可以帮助您在安装过程中查看包的具体来源,有助于诊断问题。

  • 编辑.condarc文件

    确保~/.condarc文件中PyTorch的链接优先级最高。可以使用文本编辑器直接编辑这个文件,或使用以下命令查看当前配置:

    bash 复制代码
    cat ~/.condarc
步骤2: 选择性添加和精简其他镜像源
  • 深度学习源

    bash 复制代码
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

    该源包含一些旧版本的深度学习库。

  • 主镜像源

    bash 复制代码
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

    包含大量的通用库,但可能包括CPU版本的PyTorch和旧的CUDA版本。

  • 其他镜像源的选择性添加

    • Conda-forge源:

      bash 复制代码
      conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

      包含大量第三方库,应谨慎添加,以避免潜在的版本冲突。

bash 复制代码
auto_activate_base: false
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.sustech.edu.cn/anaconda-extra/cloud/nvidia/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - defaults
show_channel_urls: true
步骤3: 安装指定版本的PyTorch和CUDA Toolkit
  • 根据CUDA版本选择对应的PyTorch版本。您可以在PyTorch官网或清华源网站上找到版本兼容表。

  • 执行安装命令:

    bash 复制代码
    conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
步骤4: 验证安装
  • 检查已安装的PyTorch版本:

    bash 复制代码
    conda list pytorch
  • 在Python中验证CUDA支持:

    python 复制代码
    import torch
    print(torch.cuda.is_available())  # 应返回True

通过以上详细步骤,您可以确保从Anaconda的清华源正确安装支持CUDA的PyTorch版本,避免因配置不当而下载到CPU版本。这个过程不仅确保了软件的正确安装,也提高了安装过程的透明度和可控性。

您可以确保从Anaconda的清华源正确安装支持CUDA的PyTorch版本,避免因配置不当而下载到CPU版本。这个过程不仅确保了软件的正确安装,也提高了安装过程的透明度和可控性。

相关推荐
潮汐退涨月冷风霜21 分钟前
数字图像处理(1)OpenCV C++ & Opencv Python显示图像和视频
c++·python·opencv
华新嘉华DTC创新营销1 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain2 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t3 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华4 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu5 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师6 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞7 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8288 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡8 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d