linux c/c++最高效的计时方法

每个cpu的core在执行指令(代码)的时候,身边有约30大悍将(寄存器)在辅做,比如最典型的EBP、ESP,当要发生运行空间切换(syscall、中断),这30个寄存器里的数据是不是都要存起来以待再切回来时恢复继续接着干;

几个问题:

什么时候存?

谁存?

存在哪?

什么时候恢复?

最主要这个过程耗时多久?本文syscal揭开耗时的面纱。

程序的大致要干的事;

对64MB 循环访问一把;

连续20次调用同一个syscall函数,并分别记录每次的耗时;

printf 20次的耗时;

循环以上三步骤;

main_syscall.c

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <unistd.h>

#include <sys/types.h>

#include "common.h"

#define LOOPCNT 20

#define BLOCKLEN 1000000

int g_aiData[BLOCKLEN][16];

int main(int argc, char ** argv)

{

int i;

long long t1, t2;

struct timespec stTP;

复制代码
long long aldiff[LOOPCNT] = { 0 };
int iTemp = 0;

while(1)
{
    for (i = 0; i < BLOCKLEN; i++) /* 64MB的内存先访问一把,把L1 L2 L3尽力刷一把 */
        g_aiData[i][0] = i;

    aldiff[0] = 0;
     
    for (i = 0; i < LOOPCNT; i++)
    {
        t1 = rte_rdtsc();  /* 直接从rdtsc寄存器取,注:这个是x86_64上的 */
        getnstime(&stTP);  /* 这个函数会走syscall进内核 */
        t2 = rte_rdtsc();
        aldiff[i] = t2 - t1;
    }
     
    printf("----------------------------\n");
    for (i = 0; i < LOOPCNT; i++)
    {
        printf("%d:%lld, ", i, aldiff[i]);
    }
    printf("\n");
}
 
return 0;

}

common.c

#include <sys/time.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include "common.h"

//typedef unsigned long long uint64_t;

long long getustime(void)

{

struct timeval tv;

long long ust;

复制代码
gettimeofday(&tv, NULL);
ust = ((long)tv.tv_sec)*1000000;
ust += tv.tv_usec;
return ust;

}

void getnstime(struct timespec pstTP)
{
clock_gettime(CLOCK_MONOTONIC_RAW, pstTP); /
这里带RAW的是会syscall进内核的 */

return;

}

long diff_nstime(struct timespec *pstTP1, struct timespec *pstTP2)

{

return (pstTP2->tv_sec - pstTP1->tv_sec)*1000000000 + pstTP2->tv_nsec - pstTP1->tv_nsec;

}

inline long long rte_rdtsc(void)

{

union {

long long tsc_64;

struct {

unsigned int lo_32;

unsigned int hi_32;

};

} tsc;

复制代码
asm volatile("rdtsc" :
         "=a" (tsc.lo_32),
         "=d" (tsc.hi_32));
return tsc.tsc_64;

}

common.h

#ifndef COMMON_H_

#define COMMON_H_

#define ERROR_SUCCESS 0

#define ERROR_FAIL 1

#define IN

#define OUT

#define INOUT

#define CACHE_LINE 64

//#define HASHSIZE 1*1024

typedef unsigned long ulong_t;

long long getustime(void);

void getnstime(struct timespec *pstTP);

long diff_nstime(struct timespec *pstTP1, struct timespec *pstTP2);

inline long long rte_rdtsc(void);

#endif

可以看出,每轮都是第1次耗时最长,约3000(计时单位是时钟周期)这个量级,后面接着的都是300,相差了近10倍;

为什么会是这样?

我们平常调的系统调用都是每轮第1次这个样子么?

相关推荐
xiaoliuliu123456 分钟前
openssl-libs-1.1.1f-4.p12.ky10.x86_64.rpm 安装指南 解决依赖与常见报错
linux
重生之绝世牛码6 分钟前
Linux软件安装 —— PostgreSQL集群安装(主从复制集群)
大数据·linux·运维·数据库·postgresql·软件安装·postgresql主从集群
17(无规则自律)30 分钟前
【CSAPP 读书笔记】第一章:计算机系统漫游
linux·c语言·arm开发·嵌入式硬件·学习·ubuntu
李少兄33 分钟前
深入解析 Nginx 413 Request Entity Too Large 错误
运维·nginx
青主创享阁34 分钟前
玄晶引擎:基于多模态大模型的全流程AI自动化架构设计与落地实践
运维·人工智能·自动化
天才奇男子43 分钟前
LVS原理及部署
linux·运维·云原生·wpf·lvs·linux chrony
学习3人组1 小时前
Docker run 挂载本地两个目录到容器内的写法(核心规则+实操示例)
运维·docker·容器
梁洪飞1 小时前
内核启动卡死在Starting kernel ...,没有任何打印如何定位
linux·arm开发·嵌入式硬件·arm
独自破碎E1 小时前
【字符串分割】验证IP地址
服务器·网络·tcp/ip
321.。1 小时前
深入理解 Linux 线程封装:从 pthread 到 C++ 面向对象实现
linux·开发语言·c++