时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

目录

    • [时序预测 | 改进图卷积+informer时间序列预测,pytorch架构](#时序预测 | 改进图卷积+informer时间序列预测,pytorch架构)

预测效果

基本介绍

改进图卷积+informer时间序列预测代码

CTR-GC卷积,informer,CTR-GC

图卷积 GCN 中,图拓扑在特征聚合中占主导地位,提取代表性特征的关键。因此提出了一种改进GCN的新方法,叫通道拓扑细化图卷积 (CTR-GC),以动态学习不同的拓扑结构,并有效地聚合不同通道中的特征。

本代码尝试将它转移用到时间序列中,创新思维的三维转二维,利用部分卷积进行特征提取,将提取的结果放入informer进行预测,预测还不错,同时证实了引入图卷积的可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。验证模型,划分测试集训练集。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

  • 完整源码私信博主回复改进图卷积+informer时间序列预测,pytorch架构

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
张较瘦_3 分钟前
[论文阅读] 人工智能 + 软件工程 | ReCode:解决LLM代码修复“贵又慢”!细粒度检索+真实基准让修复准确率飙升
论文阅读·人工智能·软件工程
极客小张5 分钟前
【项目思路】基于STM32+ZigBee的智能家居--浴室场景设计
c语言·python·stm32·智能家居·课程设计·项目设计·企业项目
万岳科技程序员小金2 小时前
餐饮、跑腿、零售多场景下的同城外卖系统源码扩展方案
人工智能·小程序·软件开发·app开发·同城外卖系统源码·外卖小程序·外卖app开发
桐果云2 小时前
解锁桐果云零代码数据平台能力矩阵——赋能零售行业数字化转型新动能
大数据·人工智能·矩阵·数据挖掘·数据分析·零售
二向箔reverse4 小时前
深度学习中的学习率优化策略详解
人工智能·深度学习·学习
幂简集成4 小时前
基于 GPT-OSS 的在线编程课 AI 助教追问式对话 API 开发全记录
人工智能·gpt·gpt-oss
AI浩4 小时前
【面试题】介绍一下BERT和GPT的训练方式区别?
人工智能·gpt·bert
Ronin-Lotus4 小时前
深度学习篇---SENet网络结构
人工智能·深度学习
n12352355 小时前
AI IDE+AI 辅助编程,真能让程序员 “告别 996” 吗?
ide·人工智能
漠缠5 小时前
Android AI客户端开发(语音与大模型部署)面试题大全
android·人工智能