时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

目录

    • [时序预测 | 改进图卷积+informer时间序列预测,pytorch架构](#时序预测 | 改进图卷积+informer时间序列预测,pytorch架构)

预测效果

基本介绍

改进图卷积+informer时间序列预测代码

CTR-GC卷积,informer,CTR-GC

图卷积 GCN 中,图拓扑在特征聚合中占主导地位,提取代表性特征的关键。因此提出了一种改进GCN的新方法,叫通道拓扑细化图卷积 (CTR-GC),以动态学习不同的拓扑结构,并有效地聚合不同通道中的特征。

本代码尝试将它转移用到时间序列中,创新思维的三维转二维,利用部分卷积进行特征提取,将提取的结果放入informer进行预测,预测还不错,同时证实了引入图卷积的可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。验证模型,划分测试集训练集。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

  • 完整源码私信博主回复改进图卷积+informer时间序列预测,pytorch架构

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
pen-ai11 分钟前
【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
人工智能·自然语言处理·动态规划
Chaos_Wang_17 分钟前
NLP高频面试题(二十九)——大模型解码常见参数解析
人工智能·自然语言处理
liuhaoran___22 分钟前
解释区块链技术的应用场景和优势
python
独好紫罗兰23 分钟前
洛谷题单2-P5712 【深基3.例4】Apples-python-流程图重构
开发语言·python·算法
Acrelhuang25 分钟前
8.3MW屋顶光伏+光储协同:上海汽车变速器低碳工厂的能源革命-安科瑞黄安南
大数据·数据库·人工智能·物联网·数据库开发
区块链蓝海25 分钟前
沉浸式体验测评|AI Ville:我在Web3小镇“生活”了一周
人工智能·web3·生活
东方佑38 分钟前
深度解析Python-PPTX库:逐层解析PPT内容与实战技巧
开发语言·python·powerpoint
whaosoft-14340 分钟前
51c自动驾驶~合集15
人工智能
花楸树40 分钟前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
Python大数据分析@1 小时前
python 常用的6个爬虫第三方库
爬虫·python·php