时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

时序预测 | 改进图卷积+informer时间序列预测,pytorch架构

目录

    • [时序预测 | 改进图卷积+informer时间序列预测,pytorch架构](#时序预测 | 改进图卷积+informer时间序列预测,pytorch架构)

预测效果

基本介绍

改进图卷积+informer时间序列预测代码

CTR-GC卷积,informer,CTR-GC

图卷积 GCN 中,图拓扑在特征聚合中占主导地位,提取代表性特征的关键。因此提出了一种改进GCN的新方法,叫通道拓扑细化图卷积 (CTR-GC),以动态学习不同的拓扑结构,并有效地聚合不同通道中的特征。

本代码尝试将它转移用到时间序列中,创新思维的三维转二维,利用部分卷积进行特征提取,将提取的结果放入informer进行预测,预测还不错,同时证实了引入图卷积的可行性。

python代码

pytorch架构

适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。验证模型,划分测试集训练集。

1.多变量输入,单变量输出

2.多时间步预测,单时间步预测

3.R方,MAE,MSE MAPE对比图,误差图(缺少的可自行添加)

4.将结果保存下来供后续处理

5.代码自带数据,一键运行,csv,xlsx文件读取数据,也可以替换自己数据集很简单。

  • 完整源码私信博主回复改进图卷积+informer时间序列预测,pytorch架构

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
黄啊码5 分钟前
Coze新品实测:当AI开始像产品经理思考,我和程序员吵架的次数少了
人工智能·agent·coze
cRack_cLick15 分钟前
pandas库学习02——基本数据清洗
python·pandas
jie*19 分钟前
小杰机器学习(six)——概率论——1.均匀分布2.正态分布3.数学期望4.方差5.标准差6.多维随机变量及其分布
人工智能·机器学习·概率论
yubo050920 分钟前
YOLO系列——实时屏幕检测
开发语言·windows·python
挽安学长22 分钟前
通过 gaccode在国内使用ClaudeCode,Windows、Mac 用户配置指南!
人工智能
唐某人丶35 分钟前
教你如何用 JS 实现 Agent 系统(3)—— 借鉴 Cursor 的设计模式实现深度搜索
前端·人工智能·aigc
weixin_4573402135 分钟前
RTX5060 Ti显卡安装cuda版本PyTorch踩坑记录
人工智能·pytorch·python
Stanford_110637 分钟前
关于物联网的基础知识(四)——国内有代表性的物联网平台都有哪些?
人工智能·物联网·微信·微信公众平台·twitter·微信开放平台
偶尔贪玩的骑士37 分钟前
Machine Learning HW4 report: 语者识别 (Hongyi Lee)
人工智能·深度学习·机器学习·self-attention
柯南二号44 分钟前
【AI】【Java后端】RAG 实战示例:SpringBoot + 向量检索 + LLM 问答系统
java·人工智能·spring boot