动态规划 —— dp 问题-买卖股票的最佳时机IV

前言

在开始之前先说一下本题与 买卖股票的最佳时机Ill 的解法很相似,也可以去参考lll

动态规划 ------ dp 问题-买卖股票的最佳时机III-CSDN博客https://blog.csdn.net/hedhjd/article/details/143671809?spm=1001.2014.3001.5501


1. 买卖股票的最佳时机IV

题目链接:

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/


2. 题目解析


3. 算法原理


状态表示:以某一个位置为结尾或者以某一个位置为起点

dp[i]表示:第i天结束之后,此时的最大利润 :两种情况:

1. f[i][j]表示:第i天结束之后,完成了j次交易,处于买入状态,此时的最大利润

2. g[i][j]表示:第i天结束之后,完成了j次交易,处于卖出状态,此时的最大利润
2. 状态转移方程

在第i-1天处于买入状态,看买入状态能不能到自己,看卖出状态能不能到买入状态,另一个状态也是如此,一共4种状态

|----------|-------------------------------|-----------------------|
| | 买入状态到 | 卖出状态到 |
| 买入状态 | 什么都不干 | -prices[i](买股票) |
| 卖出状态 | +prices [i](交易次数+1) | 什么都不干 |

1. f[i][j] = max(f[i-1][j] , g[i-1][j] - prices[i])

2. g[i][j] = max(g[i-1][j] , f[i-1][j-1] + prices[i]

3. 初始化把dp表填满不越界,让后面的填表可以顺利进行

本题的初始化与买卖股票的最佳时机Ill相同,就不多做解释了(不理解可以去看,有详细解释),直接写出来,直接将第二个状态转移方程修改为:

1. g[i][j] = g[i-1][j](此状态一定不会越界)

2. if(j-1>=0) g[i][j] = max(g[i][j] , f[i-1][j-1] + prices[i]

本题初始化就是先将表里的所有值都初始化为-无穷大,再把f[0][0] = - -prices[0],g[0][0] = 0
4. 填表顺序

本题的填表顺序是:从上往下填写每一行,每一行从左往右,两个表同时填
5. 返回值 :题目要求 + 状态表示

因为是要最大利润,所以买入状态不用考虑

本题的返回值是:g表里最后一行里面的最大值


4. 代码

动态规划的固定四步骤:1. 创建一个dp表

2. 在填表之前初始化

3. 填表(填表方法:状态转移方程)

4. 确定返回值

#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        const int INF = 0x3f3f3f3f;//将无穷大赋予给INF

        int n = prices.size();
        //处理一下细节问题
        k = min(k, n / 2);
        //1.  创建dp表
        vector<vector<int>>f(n, vector<int>(k + 1, -INF));
        auto g = f;

        //2. 在填表之前初始化
        f[0][0] = -prices[0];
        g[0][0] = 0;

        //3. 填表(填表方法:状态转移方程)
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j <= k; j++)
            {
                f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);
                g[i][j] = g[i - 1][j];
                if (j >= 1)
                    g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
            }
        }
        //g表里最后一行里面的最大值
        int ret = 0;
        for (int j = 0; j <= k; j++)
            ret = max(ret, g[n - 1][j]);
        return ret;

    }
};

完结撒花~

相关推荐
TaoYuan__1 小时前
机器学习的常用算法
人工智能·算法·机器学习
用户40547878374822 小时前
深度学习笔记 - 使用YOLOv5中的c3模块进行天气识别
算法
十七算法实验室2 小时前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
黑不拉几的小白兔2 小时前
PTA部分题目C++重练
开发语言·c++·算法
chordful2 小时前
Leetcode热题100-32 最长有效括号
c++·算法·leetcode·动态规划
_OLi_3 小时前
力扣 LeetCode 459. 重复的子字符串(Day4:字符串)
算法·leetcode·职场和发展·kmp
材料苦逼不会梦到计算机白富美3 小时前
线性DP 区间DP C++
开发语言·c++·动态规划
Romanticroom3 小时前
计算机23级数据结构上机实验(第3-4周)
数据结构·算法
白藏y3 小时前
数据结构——归并排序
数据结构·算法·排序算法