机器学习笔记2 - 机器学习的一般流程


image.png

1、数据基本处理

数据集的划分

  • 根据用途可将获取到的数据划分为训练集和测试集,有时还会有验证集。
  • 一般而言训练集用于训练模型,测试集用于测试模型的效果(泛化误差)。严格来讲,测试集的数据不能直接或间接(根据测试结果来调整模型参数)的用于模型训练。
  • 验证集在模型训练阶段不会带入模型进行训练,但当模型训练结束之后,我们会把模型带入验证集进行计算,通过观测验证集上模型运行结果,判断模型是否要进行调整,验证集也会模型训练,只不过验证集训练的不是模型参数,而是模型超参数。
  • 训练集和测试集的划分:可以随机划分,一般情况下70%-80%作为训练集、20%-30%作为测试集。
  • 总的来说,测试集是严格不能带入训练的数据集,在实际建模过程中我们可以先把测试集切分出来,然后"假装这个数据集不存在",在剩余的数据集中划分训练集和验证集,把训练集带入模型进行运算,再把验证集放在训练好的模型中进行运行,观测运行结果,再进行模型调整。
  • 在一些不太严谨的情况下会混用测试集和验证集,不对二者进行区分;但在一些情况下(如在线提交结果的数据竞赛),是需要对二者做严格的区分的。
  • 在机器学习理论体系中,一个更加严谨的做法,是先划分训练集和测试集,然后再在训练集上划分测试集,并且"训练集-测试集"划分方法用于进行模型参数训练,而"训练集-验证集"的划分方法主要用于进行模型超参数选取。

2、特征工程

  • 使用专业知识是的特征能在机器学习算法上发挥更好的作用的过程。

2.1 特征提取

特征通常来自文献调研,看同行在解决同类问题时都使用了哪些特征;也可自行引入新的特征。

2.2 特征预处理

2.3 特征降维

去掉对模型影响不大的特征

常用的线性降维方法,如PCA;非线性降维方法,如tSNE,UMAP。

3、机器学习

3.1 提出基本模型

基于对数据的初步认识,或者分析的需求,提出一个模型。

3.2 确定损失函数(可自定义)

根据模型确定损失函数并进行构建

3.3 根据损失函数的性质,选择优化放法(求最小值)

  • 最小二乘法(适用范围有限)

3.4 利用优化算法进行损失函数求解

计算出模型的测试/泛化误差

3.5 调参或更换其他模型

基于测试结果调整模型参数

若调整参数仍无法得到理想的结果,则可以考虑更换模型,并重复3.2 ~ 3.4的步骤。

4、模型评估

机器学习笔记3-模型评估
© 著作权归作者所有,转载或内容合作请联系作者

喜欢的朋友记得点赞、收藏、关注哦!!!

相关推荐
一只爱撸猫的程序猿2 小时前
构建一个简单的智能文档问答系统实例
数据库·spring boot·aigc
crud3 小时前
Spring Boot 3 整合 Swagger:打造现代化 API 文档系统(附完整代码 + 高级配置 + 最佳实践)
java·spring boot·swagger
鳄鱼杆4 小时前
服务器 | Centos 9 系统中,如何部署SpringBoot后端项目?
服务器·spring boot·centos
千|寻4 小时前
【画江湖】langchain4j - Java1.8下spring boot集成ollama调用本地大模型之问道系列(第一问)
java·spring boot·后端·langchain
保持学习ing4 小时前
Spring注解开发
java·深度学习·spring·框架
techzhi4 小时前
SeaweedFS S3 Spring Boot Starter
java·spring boot·后端
酷爱码4 小时前
Spring Boot 整合 Apache Flink 的详细过程
spring boot·flink·apache
异常君5 小时前
Spring 中的 FactoryBean 与 BeanFactory:核心概念深度解析
java·spring·面试
cacyiol_Z5 小时前
在SpringBoot中使用AWS SDK实现邮箱验证码服务
java·spring boot·spring
hstar95277 小时前
三十五、面向对象底层逻辑-Spring MVC中AbstractXlsxStreamingView的设计
java·后端·spring·设计模式·架构·mvc