使用大语言模型创建 Graph 数据

Neo4j 是开源的 Graph 数据库,Graph 数据通过三元组进行表示,两个顶点+一条边,从语意上可以理解为:主语、谓语和宾语。GraphDB 能够通过图来表达复杂的结构,非常适合存储知识型数据,本文将通过大语言实现图数据库的创建。

首先,需要安装 LangChain 对应的依赖。

复制代码
langchain==0.3.7
python-dotenv==1.0.1
langchain-google-genai==2.0.4
langserve==0.3.0
langchain-community==0.3.5
dashscope==1.20.12
langgraph==0.2.45
tavily-python==0.5.0
langchain-experimental==0.3.3

初始化模型

本文我们使用 Qwen-Turbo。

复制代码
from langchain_community.chat_models import ChatTongyi
llm = ChatTongyi(model="qwen-turbo")

使用 LLMGraphTransformer 创建

创建的图关系为英文,这是因为 Langchain 提示词是英文,可以自行修改。

复制代码
### 创建 Graph
from langchain_core.documents import Document
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.output_parsers import StrOutputParser
from IPython.display import Markdown, display
parser = StrOutputParser()

llm_transformer = LLMGraphTransformer(llm=llm)

content = """
1 、项目编号:遂政采 [2024]G 049 号
2 、项目名称:无人机设备采购项目
3 、项目预算: 1550967.00元 4 、最高限价: 1550967.00元

1 、本项目投标截止时间和开标时间为 2024 年 9 月 11 日 10 点 00 分 (北京
时间)。投标人必须在投标截止时间前将电子投标文件上传至江西省公共资源
交易网,逾期为无效投标。
2 、开标地点:江西省公共资源交易网不见面开标大厅。
"""
with open("out.md", "r", encoding="utf-8") as file:
    markdown_content = file.read()

chain = llm | parser
# display(Markdown(chain.invoke("转换为 Graph 三元组, 请用中文回答,并只返回 Cypher QL, 。 {} " + content)))

documents = [Document(page_content=content)]
graph_documents = llm_transformer.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents[0].nodes}")
print(f"Relationships:{graph_documents[0].relationships}")
graph.add_graph_documents(graph_documents, include_source=False)

使用 Cypher 创建

Neo4j 提供了使用 Cypher 进行数据创建、查询等,类似于关系数据库中的 SQL。用模型生成 Cypher 语句。

复制代码
### 创建 Graph
from langchain_core.documents import Document
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.output_parsers import StrOutputParser
from IPython.display import Markdown, display
parser = StrOutputParser()

llm_transformer = LLMGraphTransformer(llm=llm)

content = """
1 、项目编号:遂政采 [2024]G 049 号
2 、项目名称:无人机设备采购项目
3 、项目预算: 1550967.00元 4 、最高限价: 1550967.00元

1 、本项目投标截止时间和开标时间为 2024 年 9 月 11 日 10 点 00 分 (北京
时间)。投标人必须在投标截止时间前将电子投标文件上传至江西省公共资源
交易网,逾期为无效投标。
2 、开标地点:江西省公共资源交易网不见面开标大厅。
"""
with open("out.md", "r", encoding="utf-8") as file:
    markdown_content = file.read()

chain = llm | parser
display(Markdown(chain.invoke("转换为 Graph 三元组, 请用中文回答,并只返回 Cypher QL, 。 {} " + content)))

总结

本文介绍了如何使用大语言模型创建图数据,同样的方式也可以创建其他类型的数据源,只需要对提示词进行修改即可。

相关推荐
Peter_Monster2 天前
大语言模型(LLM)架构核心解析(干货篇)
人工智能·语言模型·架构
AI绘画哇哒哒2 天前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
python零基础入门小白2 天前
【万字长文】大模型应用开发:意图路由与查询重写设计模式(从入门到精通)
java·开发语言·设计模式·语言模型·架构·大模型应用开发·大模型学习
重整旗鼓~3 天前
3.会话功能-AiServices工具类
java·语言模型·langchain
清云逸仙3 天前
AI Prompt应用实战:评论审核系统实现
人工智能·经验分享·ai·语言模型·prompt·ai编程
清云逸仙3 天前
使用AI(GPT-4)实现AI prompt 应用--自动审核评论系统
人工智能·经验分享·ai·语言模型·ai编程
Curvatureflight3 天前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
做cv的小昊3 天前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
开放知识图谱3 天前
论文浅尝 | 利用条件语句激发和提升大语言模型的因果推理能力(CL2025)
人工智能·语言模型·自然语言处理
rgb2gray3 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm