AI大模型(一):Prompt & AI编程

一、Prompt Engineering,提示工程

提示工程也叫指令工程:

  • Prompt是发给大模型的指令,比如【讲个睡前故事】、【用Python写个消消乐游戏】等;
  • 本质上大模型相关的工程工作,都是围绕prompt展开的;
  • 提示工程门槛低,天花板高,所以又有人戏称Prompt为咒语;
  • Prompt相当于是AGI时代的编程语言;
  • 高质量prompt核心:具体、丰富、少歧义;
  • Prompt是个逐步调优的过程,并不是一下子就好。

OpenAI官方提供的Prompt Engineering教程:

https://platform.openai.com/docs/guides/prompt-engineering

Prompt的典型构成

不要固守模板,模板的价值是提醒我们别漏掉什么,而不是必须遵守模板。

1. 角色:
  • 给AI定义一个最匹配任务的角色;
  • 比如:【你是一个软件产品经理】【你是一位小学语文老师】;
  • 先定义角色,就是在开头把问题域收窄,较少二义性;
2. 指令:
  • 对任务进行描述;
3. 上下文:
  • 给出与任务相关的其它背景信息;
4. 例子:
  • 必要时给出举例,学术中称为one-shot learning, few-shot learning或in-context learning;
5. 输入:
  • 任务的输入信息;再提示词中明确的标识出输入;
6. 输出:
  • 输出的格式描述,以便后续模块自动解析模型的输出结果,比如JSON、XML;

案例:推荐流量包的智能客服

需求:智能客服根据用户的咨询,推荐最合适的流量包。

大模型应用于软件系统的核心思路:
  1. 把输入的自然语言对话,转成结构化的信息(自然语言理解NLU);
  2. 用传统软件的手段去处理结构化信息,得到处理策略;
  3. 把策略转成自然语言输出(NLG);
对话流程举例:
用Prompt实现
定义任务描述和输入:
python 复制代码
"""
1. 任务描述                  
"""
    instruction = """
                    你的任务是识别用户对手机流量套餐产品的选择条件。
                    每种流量套餐产品包含三个属性:名称、月费价格和月流量。
                    根据用户输入,识别用户在上述三种属性上的需求是什么
                   """


"""
2. 用户输入                 
"""
    input_text = """
                    办理100G的套餐
                   """

# prompt模板,instruction和input_text会被替换为上面的内容
prompt = f"""
{instruction}

用户输入:{input_text}
"""

"""
3. 调用大模型                 
"""
response = get_completion(prompt)
print(response)
约定输出格式:
python 复制代码
"""
1. 输出格式                  
"""
    output_format = """
                    以 JSON 格式输出
                   """


"""
2. 稍微调整咒语,加入输出格式                 
"""
prompt = f"""
{instruction}

{output_format}

用户输入:
{input_text}
"""

"""
3. 调用大模型                 
"""
response = get_completion(prompt, response_format="json_object")
print(response)

二、用AI帮我写代码

认知AI最好的方式就是天天用。

问自己几个问题:

1. 我的时间都消耗在哪里?

  • 工作、学习、娱乐、锻炼
  • 工作&学习:学习新技术新知识,一方面了解发展水平和趋势,以及各个工具如何使用;另一方面结合以往和现在的工作场景、工作中的痛点,思考有哪些可以优化改进的地方。
  • 娱乐:找各种好看的下饭剧
  • 锻炼:根据个人喜好和身体反馈,不定期的调整运动项目和动作

2. 怎么让AI帮我省时间?

  • 重复脑力劳动都可以考虑AI化;
  • 【输入和输出都是文本】的场景,都值得尝试用大模型提效;

3. 如何找到落地场景?

  • 从最熟悉的领域入手
  • 尽量找能用语言描述清楚的任务
  • 别求大而全。将任务拆解,先解决小任务、小场景
  • 让AI学最厉害员工的能力,再让ta辅助其他员工,实现降本增效

AI Embedded模式 ---------》Copilot模式------》Agent模式

Agent模式目前有点超前,Copilot是当前主流

实现Copilot的主流架构是多Agent架构,模仿人做事,将业务拆成工作流(workflow 、SOP、pipeline),每个Agent负责一个工作流节点。

【编程】是目前大模型能力最强的垂直领域,甚至超越了对【自然语言】本身的处理能力。因为训练数据质量高、结果可衡量、编程语言无二义性,且有论文证明编程训练能增强模型的推理能力,所以会特别训练这块。

知道怎么用好AI编程,了解它的能力边界、使用场景,就能类比出其他领域的AI怎么落地,能力上限在哪。

How to build an enterprise LLM application: Lessons from GitHub Copilot - The GitHub Blog

产品设计经验:在chat界面里用 @ 串联多个agent是一个常见的AI产品设计范式。

一些其他的使用方式:10 unexpected ways to use GitHub Copilot - The GitHub Blog

让AI在不影响用户原有工作习惯的情况下切入使用场景,接受度更高。例如,Copilot最开始使用的是问答,然后取消问答使用补全,最后恢复问答。

先以架构师的身份,让AI辅助你对架构进行选型;通过需求文档和业务文档,让AI给出架构的建议;然后以开发者的身份,让AI辅助你写业务代码(逐层拆分向下写)。

落地经验:新工具的引入,可能会有一些负面的因素要考虑,需要有足够的信心和耐心去应对。核心是调整好利益链

总结

不管是个人还是企业,都能借用AI提效。

  • 通过天天使用,总结使用大模型的规律,【输入和输出都是文本】的场景,都值得尝试用大模型提效。
  • 通过体验GitHub Copilot,认识到,AI产品的打磨过程、落地和如何打造盈利产品。
  • 基于落地的成功案例,理解基本原理,避免拍脑袋。
相关推荐
明阳~1 小时前
LLM函数调用(Function Call):智能扩展AI能力
llm·prompt·agent·function call
love530love5 小时前
在 PyCharm 中配置 x64 Native Tools Command Prompt for VS 2022 作为默认终端
ide·人工智能·windows·python·pycharm·prompt·comfyui
njsgcs8 小时前
我要搞个ai程序操控鼠标,截取屏幕,识别刀路,给ai一个刀路寻找规则的prompt,然后ai自己去按规则顺序点亮刀路
人工智能·prompt·项目预告
settingsun12251 天前
LLM Prompt三大框架之一:CRISPE (vs ICIO)
ai·prompt
小小工匠1 天前
LLM - 从 Prompt 到 Context:2026 Agent 时代的核心战场
prompt·agent·context
sulikey1 天前
Anaconda 无法找到 Anaconda Prompt 的原因
prompt·anaconda·anaconda prompt
兜兜转转了多少年1 天前
《Prompt Engineering白皮书》笔记08 我用 Gemini 10 分钟写完脚本,100 个文件自动改名
笔记·prompt
Robot侠3 天前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
陈建1113 天前
Prompt工程 智能客服推荐应用案例
prompt
PPIO派欧云3 天前
PPIO上线Prompt Cache:让模型调用更快、更省、更稳
大数据·人工智能·prompt